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ABSTRACT. Let p > 3 be a prime, u,v,d € Z, ged(u,v) = 1, p { u? — dv?
and (773"1) =1, where (%) is the Legendre symbol. In the paper we mainly

determine the value of (%) (p=(5)/3 (

of appropriate binary quadratic forms. As applications, for p = 1 (mod 3)
we obtain a general criterion for m(®~1)/3 (mod p) and a criterion for £4 to

mod p) by expressing p in terms

be a cubic residue of p, where ¢4 is the fundamental unit of the quadratic
field Q(v/d). We also give a general criterion for p | U(p—(%))/?n where

{Un} is the Lucas sequence defined by Up = 0, U1 = 1 and Up41 =
PU, — QUp—-1 (n > 1). Furthermore, we establish a general result to
illustrate the connections between cubic congruences and binary quadratic
forms.

MSC: Primary 11A15, Secondary 11E16, 11A07, 11B39
Keywords: cubic residue, binary quadratic form, cubic Jacobi symbol, cubic
congruence

1. Introduction.

Let Z be the set of integers, w = (—1++/=3)/2 and Z|w] = {a+bw | a,b €
Z}. For m = a+bw € Z[w] the norm of 7 is given by N7 = 77 = a?—ab+b?,
where 7 is the complex conjugate of w. We recall that 7 is primary if
m =2 (mod 3) (that is, 3 |a —2 and 3 | b).

If 7 € Zw], N7 > 1 and 7 = £2 (mod 3), we may write 7 = £7 - - - 7y,
where 71, ... ,m, are primary primes. For a € Z|w|, we can define the cubic

Jacobi symbol
(%)3 - <7%>3 o (7%>3’
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where (7%)3 is the cubic residue character of @ modulo 7; defined by

ay [0 ifm | a,
(7Tt>3 - wi if Oé(Nﬂ'tfl)/S =

For our convenience we also define (0‘)3 = (%) =1

w' (mod 7).
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According to [IR, pp. 112-115, 135, 313] and [S1] the cubic Jacobi symbol
has the following properties:

(1.1) If a,b € Z and a + bw = 2 (mod 3), then

w atbil l—w 2(a+1)
( ) =w 3 and ( ) =w 3 .
a-+bw/3 a+bw/s

(1.2) If 7, A € Z[w] and 7, A = £2 (mod 3), then

(2),= &),

(1.3) If o, ™ € Z[w] with 7 = £2 (mod 3) and (£)3 # 0, then

(2. =)=,

(1.4) If m,n € Z, 3+ m and m is coprime to n, then (%)

(1.5) If 7,0, B € Z|w] and 7 = £2 (mod 3), then (25 )3 (ﬂ) (ﬁ)S.
(1.6) If mq, w2, o € Z[w] and m; = £2 (mod 3) (1 =1,2), then

G = (5

The assertion (1.2) is now called general cubic reciprocity law, which
was first proved by G. Eisenstein.

For a prime ¢ > 3 let F,; = Z/qZ be the ring of residue classes modulo
q and

C(q) ={oc}U{z |z € F,, x? # -3}
For x,y € C(q), in [S1] the author introduced the operation

Yy — 3
Tty

TkyYy =

(r*xoo=00%x =1)

and proved that C(q) is a cyclic group of order ¢ — (%), where () is the
Legendre symbol.

Combining [S1, Corollary 2.1] with [S1, Theorem 3.2 and Corollary 3.3]
we have
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Theorem 1.1 (Rational cubic reciprocity law) Let p and ¢ be dis-
tinct primes greater than 3. Suppose p = 1 (mod 3) and hence 4p =
L? 4 27M? for some L, M € Z. Then

q is a cubic residue modulo p

= 3LM is a cube in C(q)

L 3-9
< q| M or 3ME;>52—§ (mod q) for some s € Z.

Let p be a prime of the form 3k + 1. Let m be a cubefree integer with
m % 0,£1 (mod p). A general question is to give a good criterion for m
to be a cubic residue of p. A more general problem is to determine the
value of m™ modulo p. Suppose 4p = L? + 27TM? with L, M € 7Z and
L =1 (mod 3). Clearly m's =1, _1_L2/(3M), _1+L2/(3M) (mod p). In [L1]
E. Lehmer showed that if L = M (mod 4), then 2°~1/3 = (L +9M) /(L —
9IM) = w (mod p). When ¢ is a prime and ¢ is a cubic nonresidue
of p, K. S. Williams [Wi] found a method to determine the sign of M so
that ¢"5 = w (mod p).

Inspired by Williams’ work, in 1998 the author published the paper [S1].
From [S1, Corollaries 2.1, 3.3 and 3.4] we have the following result.

Theorem 1.2. Let p and q be distinct primes greater than 3. Suppose
p=1(mod3), 4p = L2+27TM? (L,M € Z), L =1 (mod 3) and g M. For
any k € Z with (’““T”“’)3 = w (in particular, for ¢ = £4 (mod 9) we may
take k =1, for ¢ = £2 (mod 9) we may take k = —1, for ¢ = £4 (mod 7)
we may take k =9, for ¢ = +2 (mod 7) we may take k = —9), we have

5 = —l- Ié/(BM) (mod p)
L k(s>—9s)—9(s> 1)

— =
3M s3 —9s+ 3k(s2 — 1)

(mod q) for some s € Z.

In [S1] the author established the following general result for m(P—1)/3
(mod p), see [S1, Theorem 2.1].

Theorem 1.3. Let p = 1 (mod 3) be a prime and 4p = L? + 27TM? with
LM €Z and L =1 (mod 3). Suppose m € Z and p{m. Assume 2% || m,

38 || m and m' is the product of all prime divisors of m not dividing 6M .
Then fori=20,1,2,

mb = <_1 _Ié/(:;M))Z (mod p)

(L+3M(1+2w)) [ Wi if 2| M,
! 3 | wtPM— if [ = M (mod 4).

m
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In this paper we determine the value of m" modulo p by expressing
p in terms of appropriate binary quadratic forms (see Theorem 4.4). For
example, we have

1 (mod p) if p =22 + 7592, 322 + 2512,
1055 = 7“iaygy (mod p) if p="Ta? +6zy + 129> # 7,
_ 19246y

107 (mod p) if p = 1922 + 2xy + 4y* # 19,

where x and y are integers.
Let p > 3 be a prime and u,v,d € Z with (u,v) = 1, p { u? — dv?
and (_%1) = 1, where (u,v) is the greatest common divisor of u and v. In

—_(k
Section 4 we determine the value of (ﬁg) (P=(5))/3 (mod p) by expressing
p in terms of appropriate binary quadratic forms. For example, if p is a

prime such that p = 2 (mod 3) and ({%) = —1, then

pil —1 (mod p) if p= 1122 + 5zy + 1132,
UHVIDS =\ 1 100t A7 (mod p) if p = 502 23y2 £ 5
2 7 102y (mod p) if p= 52" +zy +23y* # 5.

As applications, we obtain general criteria for 5Elp_(§))/ s (mod p) and
U(p,(g))/g(P, Q) (mod p), where ¢4 is the fundamental unit of the quadratic

field Q(v/d) (Q denotes the set of rational numbers) and {U,(P,Q)} is the
Lucas sequence given by Uy(P,Q) = 0, U1 (P,Q) = 1 and U,,+1(P,Q) =

For a,b,c € Z denote the binary quadratic form ax? + bxy + cy? by
(a,b,c). The discriminant of (a,b,c) is the number D = b? — 4ac. Denote
the equivalence class containing the form (a,b,c) by [a,b,c]. If a positive
integer n is represented by (a, b, ¢), then n can be represented by any form
in [a, b, c|. Thus we say that n is represented by [a, b, ¢|]. For any nonsquare
integer D = 0,1 (mod 4) let H(D) be the form class group consisting of
classes of primitive, integral binary quadratic forms of discriminant D, and
let h(D) = |H(D)| be the corresponding class number.

In [SW1, SW2], using class field theory Spearman and Williams proved

the following general result for cubic congruences.
Theorem 1.4 Let a1, as, a3 € Z be such that f(z) = 23+ a12% + asz + a3
is irreducible in Z[x]. Let D be the discriminant of f(z), and let d be the
discriminant of the cubic field Q(¢), where ¢ is a root of f(xz) = 0. Then
there is a unique subgroup J(ai,asz,a3) of index 3 in H(d) such that if
p > 3 is a prime with (%) = 1, then the congruence f(z) = 0 (mod p)
has three solutions if and only if p is represented by one of the classes in
J(ay,az,as).

In Section 7 of this paper, using our elementary method we prove a
general result similar to Theorem 1.4. In particular, we construct the cor-
responding subgroup J.
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All the main results in the paper are based on an important calculation
concerning cubic Jacobi symbols, see Theorem 3.1. Using Theorem 3.1 we
also construct cubic characters on H(—3k?d), where k = k(u, v, d) is given
by Definition 3.1. We should mention that some results in the paper are
similar to those results for quartic residues in [S3].

In addition to the above notation, we also use throughout this paper the
following notation:

N—the set of positive integers, Z,,—the set of those rational num-
bers whose denominator is coprime to m, |z|—the absolute value of z,
p* || n means p* | n but p®*! { n, ord,a—the nonnegative integer r such
that p" || a, ged(ny,n2, n3)—the greatest common divisor of ni,ng,ng,
(a,b,c) ~ (a’',V/, ') means (a,b,c) is equivalent to (a’,b,c’), Ker x—the
kernel of the mapping x.

2. Basic lemmas.
Let pe N, 31 p, k € Z, and k = ko (mod p) for kg € {0,1,... ,p—1}.

Following [S1] we define (MTH“’)?) = (’“(’HT“”)S and
k+1+2 ,
21)  Ci(p) = {k ’ (%)3 Wi, ke Zp} for i=0,1,2.

Lemma 2.1. Ifa and b are integers such that 31 a and 3 | b, then

(),
a+bw/s ’

Proof. Clearly 3 = —w?(1 — w)? and (aJ_rgw)S =1. If a = 2 (mod 3),

then a + bw is primary. So using (1.1) we see that

2 _ 2
(-3 ) 2 (2 V(A2)P et Z ¥ %
a+bw/s a+bw/3\a+bw/s

If a =1 (mod 3), then —a — bw is primary. We also have

<ajbw>3 - (ﬁ):& =W =

This proves the lemma.

Lemma 2.2. Letu,v,d € Z, and let p > 3 be a prime such that p t u® —dv?
and (_T?d) = 1. Suppose s € Z, and s*> = —3d (mod p). Then

/i ) 1 (mod p) if (W):& —1,

u—_v . sv+u w

(e) T = B @) moap) i (o)
L1+ (2)2/2) (mod p) if (kels2e)) _ 2,



Proof. If p | u, then (W)g - (%)3 — 1 and (Z;Z£>(p—(§))/3 _

(—1)®=(5))/3 =1 (mod p). Thus the result holds when p | u. Now suppose
ptu. From [S1, Theorem 2.2] we know that for ¢ = 0,1, 2,

Feaw = (BT = () e
Since s = £v/—3 - V/d (mod p), we see that
weam = ()T = (52 wan

This yields the result.

Lemma 2.3. Let (a1, b1,c1) and (az,be, c2) be two primitive, integral qua-
dratic forms of the same discriminant d, t = gecd(aq, ag, 1+ 2), and let

u, v, w be integers such that aiu + asv + b1+b2w =1t. Let

by — ba
2

b2 —d
4&3 '

ajag
t2 7

as = bs —b2+2—( v—02w> and c3 =

Then

la1,b1, c1][ag, ba, c2] = [as, bs, c3].

Moreover, if U,V € Z and (ajas,9U? + 3dV?) = 1, then

<b1V+U(1+2w)> <62V+U(1+2w)> :<b3V+U(1+2w)> .

a1 ag

Proof. From [C, p.246] we know that [ay, b1, c1]]az, be, ca] = [as, bs, c3].
By [S3, Lemma 3.2], we have

bs = by (mod 2a1/t) and bz = by (mod 2az/t).
Thus,

b ( )
=

(bgV—f—Ul—i—Qw (b3V+U1+2w
ay/t 3 as/t

) ),
<61V+U (1+2w) >3<b2V+U (1+2w) )
) ),
) )

al/t az/t 3
(b1V+U1+2w (b1V-|-U1+2w -1

<b2V+U (1+ 2w )3 <b2V—|—U (142w )331

<b1V+U (1+2w) ) 3<b2V+U (1+2w) )
) )

(b1V U(l4 2w ;3<b2V U(l+ 2w

)



Since (ai,3(b§V2+3U2)) = (a,-,3(3U2+dV2)) =1(=1,2)and t| (by+b2)
we see that

<b1V— U(1+2w)>3<b2V—U(1+2w)>

t t 3
_ <(b1v U1+ 20)(baV — U(1 + 2w))
t 3
. <b1b2V2 — (bl + bg)UV(l + 2w) — 3U2>
N t 3
b.b 2 2
_ ( 1 2V 3U ) —1
t 3

Hence the result follows.

Lemma 2.4. Let a,b € Z with ab # 0. Suppose

Fa= 1] » I »

3fordpa ordpa=1 (mod 3)
p=3 or ord,a>4
where p Tuns over all distinct prime divisors of a. If F(a) tb, then x® —
3ax — ab is irreducible in Z[z].

Proof. For i = 1,2 let

m; = H b,

pla
ordpa=t (mod 3)

where p runs over all distinct prime divisors of a such that 3 | (ord,a — 7).
Then clearly a = m;m3n3 for some integer n. If 2° — 3ax — ab is irreducible
in Z[z], then 23 — 3ax — ab = 0 for some x € Z. For such an integer
we have a | 23 and so n® | 3. Hence n | x. Set y = x/n. Then y € Z
and 32 — 3mym3ny — bmym3 = 0. Clearly myms | y> and so myims | y.
Set z = y/(myms2). Then z € Z and m3moz3 — 3mymanz — b = 0. Thus
mimg(my,3n) | b. That is F(a) | b, which contradicts the assumption.
Hence the lemma is proved.

Lemma 2.5. Suppose u,v,d € Z, dv(u® — dv?) # 0 and (u,v) = 1. Let
u? — dv? = 293" W (21 W,3+ W) and let w be the product of all distinct
prime divisors of W. If a,b,c,k,xz,y € Z, b* —4ac = —3k?d, (a(azx?+bxy+
cy?),6ky(u? —dv?)) =1, 3| (]sz) and —“ | k, then

(u,w)

((2ax + by)v + kuy + Qkuyw)
ar? + bry + cy? 3

8(ordsk—ordgv—r—1) (bv—ku(1+2w)
w ( a )3

if 2 | kuvdy,

w:l:(a+1)+5(ord3k70rd3vfr71) (bv—ku(1+2w) )
a 3

if 24 kuvdy and x = B22EL (mod 2),
7



where )
U )
= . 2 by)y.
O = 3 0) o) PO

Proof. Since 3 { a(ax? + bry + cy?) and 4a(ax? + bry + cy?) = (2ax +

by)? + 3k%dy?® we see that 3 { 2az + by. Observing that 3 | % and

((k%)é (k'fv)u) =1 we find 3 ¢ ooy and hence 3¢t CE
e
v kuy ku Y
A= (2ax + by and B = = . .
a0 ) (oky) ~ (h,) 0/h,0),3)

By the above, it is clear that
A=+1(mod3) and B =0 (mod 3).
Notice that
(az? + bry + cy?, (v, ky)) = ((az® + bry + cy?, ky),v) = 1.

So we have

((2ax+by)v+kuy+2kuyw> _( A+ B+ 2Bw )
ar? + bry + cy? 3 \ax? +bry+cy?/3

Since
2
4 24 2y v
a(ax® + bxy + cy )(v,ky)2
2
v
(2.2) _ (G 4b )2 02 .\ 32y 2y? +3(d02 - u2) J:2y2
T k) T (0, k)2 (v, ky)?
k2y2
:A2 B2 d 2 2
IS Ry
and

(u,v) = (a(az? + bry + cy?), 3ky(u? — dv?)) =1
we see that
(a(az? + bay + cy*)v?/ (v, ky)?, A® 4 3B?)
— (a(aa® + bay + cy?)o/ (v, ky)2, 3(u? — d?)k2y2/ (v, ky)?) = 1.

Thus,

(A+B+2Bw> ( A+ B+ 2Bw > (A+B+2Bw
3 3

ax? + by + cy? v2/(v, ky)?
8

)3#0'
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Hence

(2ax + by)v + kuy + 2kuyw A+ B+ 2Bw
< ar? + bry + cy? )3 (amz + bxry + cyQ)
_( A+ B+ 2Bw ) <A+B+2Bw>1
a(ax? 4 bxy + cy?)v?/(v, ky) av?/(v, ky)?
Note that 3 1 Ty and (a,ky) = 1. We see that
A+ B+ 2Bw\ ! A— B —-2Bw
( av?/(v, ky)? ) B ( av?/(v, ky)? )

A—B—2Bw)2
v/(v,ky) /s

S
|
oy
|
no
oy,
&
—
—+ o;—\

2w) _ WA 2
) (e

(
(
(bvy—kuy(1+2w)) < —332))3
=

3\v/(v, ky

bv — ku(1 + 2w)>
a 3
and

ords = ords(ky) — ords(v, ky) = ordsk + ordsy — ordsv.

ky
(v, ky)
Set s = ordsk + ordsy — ordsv. We may assume

ky
(v, ky)

If A# B (mod 2), we have
(A+B+2Bw) B (A+B+2Bw>2 B (A+B)2 _q
3 3 3

=203 M (24 M,3+ M).

4 2 2
Since
2

4a(az® + bry + cyz)(v’va)2 = (2az + by)? + 3k*dy* = 1 (mod 3),
using (1.2), (1.4), (1.5), (1.6) and (2.2) we see that
( A+ B+ 2Bw )

a(az? + bry + cy?)v?/ (v, ky)?
A+ B+ 2Bw 4a(ax? + bxy + cy?®)v?/ (v, ky)?
da(ax? + bry + cy? )UQ/(U ky)? ) :( A+ B+ 2Bw )3

A+ B+ 2Bw A+ B+ 2Bw
2C¥+2,83T+23+1WM2 2) a+20 3r+23+1WM2
A+ B+2Bw )3_(A+B—|—23w>3 <A—|—B—|—2Bw)3
A+ B+ 28w>a+25(3”+23“WM2> <3T+25+1WM2>

A+ B+ 2Bw
9

= (
(A + 3B2% + 3(dv? — u?)k%y 2/(U,ky)2)3 _ (3(dv2 — uz)k2y2/(v,ky)2)3
= (
=

3 A+ B+2Bw/3



If A= B (mod 2), then 4 | (A? + 3B?) and 21 k- Applying (1.2) and
(2.2) we see that

< A+ B+ 2Bw )
a(az? + bry + cy?)v?/(v, ky)?

_ (a(ax2 + bry + cy?)v?/ (v, ky)2> _ (a(ax2 + bry + cy?®)v?/ (v, k;y)2>

A+ B+ 2Bw 3 (A+ B)/2+ Bw 3
_ (%1 (A% +3B?) + 3(dv* — u?)k?y?/ (v, k:y)2> _ <%(alv2 —u?)k?y?/ (v, k:y)2>
(A+ B)/2+ Bw 3 (A+ B)/2+ Bw 3

B <2a—|—2ﬂ 23r+23+1WM2> B ( 2) >a+2ﬁ—2 <3r+25+1WM2>

B (A+B)/2+Bw /3 \(A+B)/2+ Bw/3 A+ B+2Bw/3
By (1.1) and (1.2) we have

( 2 ) :<(A—|—B)/2—|—Bw>
(A+B)/2+ Bw/3 2 3
(UH22) =1 if 2| Band A+ B =2 (mod 4),
=1{ (159), =u? if AB=1 (mod 4),
(%)3 =w if AB =3 (mod 4).
If2| Band A+ B =0 (mod 4), as (a(axubf;‘;rﬁﬁﬁ;"/(v’ky)z)3 # (0 we must

ga+28-2 9 - o
have (m)g §£ 0 But (m)g = 0 Hence o+ 26 — 2 = 0
Thus, putting the above together we obtain

((2a:)3 + by)v + kuy + 2kuyw> (bv — ku(1l + 2w)>—1
ar? + bry + cy? 3 3

a
B ( A+ B+ 2Bw )
~ \a(ax? + bzy + cy?)v2/ (v, ky)?
r+2s+1 2 .
(%)3 if AB =0 (mod 2),

o o r4+2s+1 2 . o
= wet2B=2 (M) if AB=1 (mod 4),

o _ r4+2s+1 2 . _
WOt (S WM if AB =3 (mod 4).

Suppose that p is a prime divisor of W. Then clearly p | w. Since
(uww) | k we see that w | ku and hence p | ku. If p | v, we must have p | u

since u? = dv? + 2°3"W. But (u,v) = 1, so p { v. Hence p | T “
therefore p | B. So we have

(A—FBVI; 2Bw>3 :<A+BVI—/|_ 2Bw>3 - H (w):z

p|W p
-11(5),

p|W

and
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where in the products p runs over all prime divisors of W. As M | B we

have
( M ) _<A+B+2Bw> _(A) 1
A+ B+2Bw/3 M 3 \M/3z
By Lemma 2.1 we also have
( 3 ) _ 2BU4B) _ap
A+ B+ 2Bw s_w - ’
Thus
3r+25+1WM2
<A+B+sz> -

(A + B + 2Bw >T+QS+I<A—|— Bwj— 2Bw>3(A+ B]\f— 2Bw>§
w™

AB 2 1
<T§ s+1) wAB (S—T—l).

Note that 2 4 B implies 2 ¢ (f—,fy) and so # = 0. Combining the above we
get

2ax + by)v + kuy + 2kuyw

(( Y) y Y >
ar? + bry + cy? 3

Wi (s=r=1) (—b”_k“(1+2‘”))3 if AB =0 (mod 2),

a

= w2(a_2)+%(5_7‘_1) (—bv_ku(1+2w))3 lf AB = 1 (mOd 4),
w2+ 52 (s—r=1) (—b”_k“él+2‘”))3 if AB =3 (mod 4).

Clearly
AB v kuy ku v (2azx + by)y
— = (2ax +b . = . .
35 - CUT WG Sk T 3k () /(R0 )?

B 5
- (v/(k0),y)*

Since 3 1 Ty We see that 31 ((kLv),y) and hence (ﬁ,y)2 =1 (mod 3).

Thus
AB

3

If 2 | AB, then clearly 2 | §. Conversely, if 2 | §, then 2 | AB when
2¢ (ﬁ,y). Since 2 | (ﬁ,y) implies 2 | y and so 2 | A, we see that

= § (mod 3).

2| AB <= 2|6 and hence 2t{AB < 2¢t4.
When 2 1§, we must have 2 1 ( o) y) and hence
AB )
3 (v/(k,0),y)?

11

= (mod 4).



From the above we obtain
((an + by)v + kuy + 2kuyw>
ar? + bry + cy? 3

LO(s—r—1) (bv—ku£1+2w))3 if § =0 (mod 2),
_ ) 2a—2)+6(s—r-1) (%‘(LH%))3 if § = 3 (mod 4),
wa72+5(577’71) (%W)S ifd=1 (mod 4)
If 3 | y, since 31 7% we see that
B ku Y AB
i . =0 d3 d 6=—=0 d3).
330 ko) o medd) 3 — 0 (modd)
Thus
(.4.)55 _ w6(ord3y+ord3k—ord31}) — w5(ord3k—0rd3v).
Hence

((Qaa: + by)v + kuy + 2kuyw>
ar? + bxy + cy? 3
{ o(ordsk—ordsv—r—1) (bv—kuél-f—Qw))g ifo=0 (mod 2)’
, if 0 ==+1 (mod 4).
To see the result, as b? — dac = —3k?d and 2t a we note that

wi(a+1)+5(0rd3k)701‘d31177“71) (bv—ku(1+2w) )
a

ku v ku v
)= : by? = . - kdy = kuvd d2
3k (h) YT ke Gy S vy mod 2
and if 2 1 kuvdy, then
k
= ﬂ(2aa: + by)y = —kuv(2azy + b) = 2z — kuvb (mod 4).

3. Cubic characters on H(—3k?d).

For later convenience we first introduce the following notation.
Definition 3.1. Suppose u,v,d € Z, dv(u? —dv?) # 0 and (u,v) = 1. Let
u? — dv? = 293"W (2t W,3 + W) and let w be the product of all distinct
prime divisors of W. Define
(2 ifd=2,3 (mod 4),
ka(u,v,d) =< 2 ifd=1 (mod 8), >0 and a = 0,1 (mod 3),

1 otherwise,

\
((3ordsvtl £ 3| and 3{u,

9 if 311 and 3 1 u,
ks(u,v,d) =
3(u,0,d) 3 if 31r—2and 3 || u,
(1 otherwise

and k(u,v,d) = ko(u,v,d)ks(u, v, d)w/(u, w).

We are now in a position to give the following key result, which plays a
central role in the paper.
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Theorem 3.1. Suppose u,v,d € Z, dv(u® — dv?®) # 0 and (u,v) = 1.
If a,b,c,z,y € Z, k = k(u,v,d), b*> — 4ac = —3k*d and (a(ax® + bxy +
cy?), 6y(u? — dv?)) = 1, then

((2@30 + by)v + kuy + 2kuyw>3 _ (bv — ku — 2kuw>3'

ax? + bxy + cy? a

Proof. Let
ku

" 3(k0) (k:,v)(

From Definition 3.1 we know that

4]

2az + by)y.

ku w
3| MW ordsk > ord
| Teo) Ty | B ordsk 2 ordse

and
ku

3(k,v)
Thus by Lemma 2.5 we have

(ordsk — ordzv —r — 1) = 0 (mod 3).

<(2aw + by)v + kuy + Zk‘uyw)
az? + bry + cy? 3
{ (W)g if 2 | kuvdy,

wEletD) (%(H?w)) if 21 kuvdy and z = #20£L (;mod 2).

3

If @« = 0,1 (mod 3), from Definition 3.1 we see that 2 | kuvd. Thus we
always have

((Zax + by)v + kuy + 2kuyw>3 _ (bv — ku(l + 2w)>3.

ax? + bxry + cy? a

This completes the proof.
Corollary 3.1. Suppose u,v,d € 7, dv(u? — dv?) # 0, (u,v) = 1 and

k= k(u,v,d). Ifa,b,c,a’,t',c € Z, (a,b,c) ~ (a’,V,c), b*>—4dac = —3k?*d
and (aa’,6(u® — dv?)) = 1, then

/

(b’v— ku(1 —|—2w))3 _ (bv — ku(1 —I—Zw))g.

a a

Proof. Since (a,b,c) ~ (a’,V', ), there are integers a, 3,7, such that
ad — vy =1 and

a(aX + BY)? +b(aX + BY)(vX +0Y) 4 c(yX + 6Y)?
=dX?>+ VXY + Y2
13



Hence
a' = ac® +bay + cy?, b =2aaf + b(ad + By) + 2¢6,
d =aB?+bp6 + co>.

Set a* = a/(a,7), ¢* = (a,y)c, © =a and y = v/(a,7y). We see that

(3.1)

2 b 2
a:2+b:cy+c*y2:aa toaytey _ @

(a,7) (a,7)
and
Vy = 2aafy + blayd + Bv?) 4 2¢%5

= 2aa3y + b(ays + By?) — 25(aa® + bay)

= (B — ad)(2ac + by) = —2aa — by (mod |d']).
Hence

b/
by = T o= 9 9y T ogra— by (mod |a*x? + bay + c*y?|).
(a,7) (@,7)  (a,7)

Since (aa’,6(u? — dv?)) = 1 we see that (a*(a*z? + bzy + c*y?),6(u? —
dv?)) = 1. Observe that (a,v) = 1 since ad — By = 1. We find (a*z,y) =
(aa/(a,v),v/(a,7)) = 1. Hence

(a*(a*z? + bry + c*y?), 6y(u? — dv?)) = 1.

Clearly we have b? — 4a*c* = b®> — 4ac = —3k?d. Thus, applying the
above and Theorem 3.1 we get

(b’v — ku(l + 2w)>
a'/(a,7) 3
< b'v — ku(l 4 2w) ) _ <—b’yv + kuy(1 + 2w)>
a*x? + bxy + c*y? a*x? + bry + c*y? /3
<(2a*x + by)v + kuy(1 + 2w)) _ <bv — ku(1 + 2w)>
a*x? + bxry + c*y? 3 3
<bv — ku(l + 2w)>
a/(a,) 3

Notice that b/ = bad = b(1 + Bv) = b (mod (a,7)). From the above we see
that

a*

<b’v—ku(1+2w)> (b’v—ku(1+2w)> (b’v—ku(1+2w)>

a (a,7) a /(a,)
bv — ku(l + 2w bv — ku(l + 2w
- ( (af’y)—}_ )>3< a/(c(L,v—; ))3
bv — ku( w)
- ( al = )3'

This is the result.
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Theorem 3.2. Suppose u,v,d € 7, dv(u® — dv?) # 0, (u,v) = 1 and
k = k(u,v,d). For [a,b,c] € H(-3k?d) with (a,6(u? — dv?)) = 1 define
x([a,b,c]) = (M)g. Then x is a character on H(—3k?*d). More-
over, if F(u?® — dv?) 1 2u, where F(t) is given as in Lemma 2.4, then x is
a surjective homomorphism from H(—3k?*d) to {1,w,w?}.

Proof. Let [a,b,c] € H(—3k?d). By [S3, Lemma 3.1] we may assume
(a,6(u? — dv?)) = 1 with no loss of generality. From Corollary 3.1 we see
that y is well defined. Since b — 4ac = —3k?d we have

(bv —ku(14-2w)) (bv+ku(142w)) = b*v? +3k*u? = 3k*(u® — dv?) (mod |a))

and so

bv — ku( w) bv + ku( w) k2 (u? — dv?)
( — )3( e )3:(3 )3:1'

a a a

Thus x([a,b,c]) € {1,w,w?}. Applying Lemma 2.3 we find that x is a
character on H(—3k?d).

Since F(u? — dv?) { 2u, from Lemma 2.4 we see that 23 — 3(u? — dv?)z —
2u(u? — dv?) is irreducible over Q. Thus, by [Se| there are infinitely many
primes p such that 23 —3(u?—dv?)r—2u(u?—dv?) = 0 (mod p) is unsolvable.
For such a prime p with p { 6duv(u? — dv?), by [S1, Corollary 4.1] we have
—3((2u)? — 4(u? — dv?)) = (2u)?2? (mod p) for some integer x € Ci(p).
That is —3dv? = u?z? (mod p) for some x € C;(p). Let b € Z be such that
bv = —kuz (mod p). Since b #Z b+ p (mod 2) we may choose b € Z such
that b = kd (mod 2) and bv = —kux (mod p). Then —bv/(ku) € Ci(p)
and b* = —3k%d (mod p). Set ¢ = (b* + 3k3d)/(4p). Then ¢ € Z and so
[p,b,c] € H(—3k?d). Clearly

(p.b. ) = (bv — k:u]gl +2w))3 _ (—,Z—Z —|—p1 —|—2w>3 L

Thus x([p, b, c]*) = x([p,b,c])* = w? and x([p, b, c]’) = x([p.b,c])® = L.
Hence Y is a surjective homomorphism from H(—3k2d) to {1,w,w?}. This
completes the proof.

Corollary 3.2. Suppose u,v,d € Z, dv(u® — dv?) # 0, (u,v) = 1 and
k = k(u,v,d). Let

G(u,v,d) = {[a, b,c] | la,b,c] € H(—-3k?d), (a,6(u® —dv®)) =1,

(bv — k:uc(bl + 2w)>3 _ 1}.

Then G(u,v,d) is a subgroup of H(—3k?*d). Moreover, if F(u? — dv?) { 2u,
then |G (u,v,d)| = h(—3k?d)/3 and so 3 | h(—3k3d).
Proof. Let x be the character given in Theorem 3.2. Then clearly
G(u,v,d) = Ker x. Thus G(u,v,d) is a subgroup of H(—3k?d). If F(u? —
15



v?) 1 2u, then Y is a surjective homomorphism and so H(—3k?d)/Ker y =
{1,w,w?}. Hence |G (u,v,d)| = h(—3k%d)/3. This finishes the proof.
Remark 3.1 Let x be the character defined in Theorem 3.2. Let A =
{K | K € H(-3k?*d), K = K~'}. For K € A we have x(K) = x(K!) =
x(K)~! and so x(K) = 1. Thus A4 is a subgroup of G(u,v,d). For [a,b,c| €
H(—3k?d) with b = 0, a = b or a = ¢, we must have [a,b,c] € A and so
la,b,c] € G(u,v,d).

r—(5)
4. Criteria for (%) 7 (mod p).

Theorem 4.1. Let p > 3 be a prime, u,v,d € Z, (u,v) = 1, v # 0,
p {1 d(u? — dv?), and let k = k(u,v,d) be given by Definition 3.1. Let
a,b,c,x,y € Z, p = ax?®+bxy+cy?, b* —4ac = —3k?d and (a, 6(u?—dv?)) =
1. If pta, then

P
r—(3)

(
(ZI%) = (‘uz—_pdvz)wz —d?) " oVl
1 (mod p) if (bv—kuél—l—Zw))S —1,
= q (= 1= ()2 Vd) (mod p) if (B=REEE) = w,
5(— 1+ (525 Vd) (mod p) if (P=HEE) = w2,
Ifp| a, then
p—(2)

(—ZIZ@ = () -ty o)

1 (mod p) Zf (bvfkul()1+2w))3 =1,
={ L(—1+(5)%%) (mod p) if (WtelE2e)) =,
(=1 (B)%) (mod p) if (tullize)y — 2

Proof. As p > 3 and p t u? — dv?, we see that p { k. If p | a, since
b? — dac = —3k3d we have b?/k* = —3d (mod p). Putting s = —b/k in
Lemma 2.2 we see that for : = 0,1, 2,

p—(35)
w—vVvd\ ° =14 (Db
(a) =

— (bv — kul()l —|—2w)>3 _ (—%v+z;(1+2w)>3 _

w\’d

Now assume p 1 a. We first show that p { y and (az,y) = 1. If p | y,
then p | = since p { a. Hence p = ax? + bxy + cy? = 0 (mod p?). But
16



this is impossible. So p { y and hence (azx,y) = 1 since (ax,y) | p. This
together with (a, 6(u? — dv?)) = 1 yields (ap, 6y(u? — dv?)) = 1. Note that
dap = (2ax+by)? +3k*dy?. We see that (M)2 = —3d (mod p). Putting

5 = % in Lemma 2.2 and then applying Theorem 3.1 we get

w1 (B2 g
(u—f—vx/a) :< 2 ) o)

(Qaz—‘rby)v + u(l + Zw)

am—)

<(2am + by)v + kuy(1 + 2w)> _
3

bv — ku — Qkfm
( ),

= W

:(_L)Z7

a

where i € {0, 1, 2}.

Now we clalm that (u + U\/_) (3) = (u? — dv?)1=(3)/2 (mod p). If
p = 1 (mod 3), then (1—)) = (5 3) = (B) = 1. Since p  u® — dv? we have
(u+ vv/d)P~(5) =1 (mod p) by Fermat’s little theorem. If p = 2 (mod 3),
then (%) = (%3) = (£) = —1 and so (Vd)P = Vd-d'= = —/d (mod p).
Thus

(u+vVd)P~ ) = (u+ vVd)(u 4 vVd)P = (u+ vVd)(uP + 0P (Vd)P)
= (u+vVd)(u — vVd) = u? — dv? (mod p).

Hence the assertion is true and so

p
- 37

—(

r—(5) p—(3) r—(3)

u—vvd) ° (u? — dv?) = (WP —dv?) s (u+vVd) =
w0V (u+ 0v/d) (u + vV/d)p=(3)

2 r—(5)
5 (u+vVd) F  (mod p).

Now putting all the above together we prove the theorem.

Theorem 4.2. Suppose that p > 3 is a prime, u,v,d € Z, (u,v) =1, v #

(r—(2))/3
0, (22) =1, pfu? — dv? and k = k(u,v,d). Then (g;—y@ PRI
17



1 (mod p) if and only if p is represented by some class in the set

G(u,v,d) = {[a, b, | [a,b,c] € H(—3k2d), (a,6(u? — dv?)) =1,
bv — ku(l +2w)\
( >3 N 1}'

a

Moreover, G(u,v,d) is a subgroup of H(—3k?d). If F(u? — dv?){ 2u, then
|G (u,v,d)| = h(—3k*d)/3.

Proof. Since (_Tg’d) = 1l and p 1 k, by the theory of binary quadratic forms
and [S3, Lemma 3.1], p can be represented by some primitive quadratic form
ax? + bxy + cy? of discriminant —3k%d with (a,6(u? — dv?)) = 1, and there
exists a primitive quadratic form (a’, ¥, ¢’) such that (a’, 6p(u? — dv?)) = 1
and (a’,0',c) ~ (a,b,c). As (a',V',) ~ (a,b,c), we see that p = az'? +
Va'y + cy'? for some /.y’ € Z and ¥'* — 4d’c’ = b? — dac = —3k2d. Thus
applying Theorem 4.1 and Corollary 3.1 we get

b

ody
(o)

=1 (mod p)

(b’v — ku(1l +2w))3 1 e (bv — ku(l +2w)>3 _q

/

a a

This together with Corollary 3.2 gives the result.

Corollary 4.1. Suppose that p > 3 is a prime, m € Z, p f m(m + 3),
2 _

sp(m) € Z,, and sp(m)” = m (mod p). Then the following statements are
equivalent:
(i) sp(m) € Co(p)-
r—(5)

(ii) (g;%)f =1 (mod p).

(iii) p is represented by some class |a,b,c] € H(9k*m) with (a,6(m +
3)) =1 and (M)?) =1, where k = k(3,1,—3m).

a

Proof. Putting u =3, v =1, d = —3m and s = 3s,(m) in Lemma 2.2
and Theorem 4.2 we obtain the result.

When m = —1, -2, -5, —6, —7, —15, the criteria for s,(m) € Cy(p) have
been given by the author in [S1, Theorem 5.2]. For example, s,(—1) €
Co(p) if and only if p is represented by 22 + 81y? or 222 + 2zy + 41y>.

Corollary 4.2. Let p be a prime of the form 3n+1 and 4p = L? + 27M?

with LM € 7. Suppose d € Z and q is a prime satisfying ¢ > 3, q {

d(d+3) and q | (L? — 9dM?)(—dL?* 4+ 81M?). Then q is a cubic residue
18



of p if and only if q is represented by some class [a,b,c] € H(9k?d) with
(a,6(d+3)) =1 and (M)g =1, where k = k(3,1, —3d).

a

Proof. From [S1, (5.4)] we know that ¢ is a cubic residue of p if and
only if s,(d) € Cy(q), where s,(d) € Z satisfies s,(d)?> = d (mod ¢). Now
applying Corollary 4.1 we obtain the result.

As an example, if p = 1 (mod 3) and ¢ > 5 are primes with 4p =
L2+27TM?*(L,M € Z) and q | (L?+135M?)(5L?+27M?), then q is a cubic
residue of p if and only if g is represented by x2 + 135y? or 5z + 27y>. See
[S1, Theorem 5.3(ii)].

Now we can use Theorems 4.1 and 4.2 to deduce cubic residuacity.

Let p be a prime of the form 3k+1 and m,n € Z with p { mn. Since mn
is a cubic residue of p if and only if m is a cubic residue of p, we need only
to consider cubic residuacity for cubefree integers m with m # 1 (mod 3).

3

Lemma 4.1. Let m be a cubefree integer with m # 0,4+1 and m #
1 (mod 3). Let mg be the product of all distinct primes q satisfying q | m
and g > 3. Then

ksmo,

1+m 1—m 34+ (=™
((2,1+m)’(2,1+m)’ >_ 2

where

1 ifm=8(mod?9),
(4.1) ks=4¢ 3 ifm=2,5(mod?9),
9 ifm=0 (mod 3).

Proof. Let u = (14+m)/(1+m,2),v=(1—-m)/(1+m,2) and d = 1.
It is easily seen that

— if 2
(4.2) (u,v)zl,u U\/C_i— ,u2—d02:{m ir24m,

u—f—v\/a_m dm if 2 | m.

Since m is cubefree, we have ordom € {0,1,2}. Thus, by Definition 3.1 we

have
3+ (=)™ _{ 1 if 2¢m,

ka(u, v, d) = —— 2 if2|m

As ordsm € {0, 1,2}, from Definition 3.1 we see that k3(u,v,d) = k3. Now
the result follows from the above and Definition 3.1.

Theorem 4.3. Let p =1 (mod 3) be a prime. Let m be a cubefree integer

with m #Z 0,£1 (mod p) and m # 1 (mod 3). Let mg be the product of

all distinct primes q satisfying q | m and ¢ > 3. Let k3 be given by (4.1)
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and k = Wk:«;mo. Suppose p = ax? + bxy + cy? with a,b,c,z,y € 7,
b? — 4ac = —3k? and (a,6m) = 1. If p{a, then

I (mod p) if (PR 1,
mpgl _ _ax—i—(lz—lz;b)y/Q (mod p) if ((m—l)b+k(;n+1)(1—|—2w))3 = w,
aa:—(lz;b)y/2 (mod p) Zf ((m—l)b+k(;n+1)(1+2w))3 — W2
If p|a, then
1 (mod p) Zf ((m—l)b—i—kz(z’b—i—l)(l—i—Zw))g _ 17
m's = IEE (mod p) if (RO
g (od p) i (L)

Proof. Let u = (1+m)/(14+m,2), v =(1—-m)/(1+m,2) and d = 1.
By (4.2), Lemma 4.1 and Theorem 4.1 we obtain the result.

From Theorem 4.3 and the theory of reduced forms we deduce the fol-
lowing results.

Corollary 4.3. Let p be a prime of the form 3n+ 1. Then

o5t 1 (mod p) if p=a® + 27y>,
3 =
7’”@2?” (mod p) ifp="Tx?+2xy +4y* #7,
g5t _ 1 (mod p) if p= 2%+ xy + 61y,
- —% (mod p) ifp=Tx%+3zy+9y* #17,
(1 (mod p) if p=2? + xy + 169y?, 1322 + zy + 1392,
5% = 19;”5;6:" (mod p) if p = 1922 + 3zy + 9y? # 19,
L 7:”15;;?’ (mod p)  if p=Ta® +bxy +25y% # T,
(1 (mod p) if p= a2 + 243y%, 72? + 6zy + 3692,
| MY (mod p) if p = 1302 + day + 19y # 13,
63 =
—% (mod p) if p = 6122 + 22y + 4y* # 61,
31lz—3y

\ " 18y (mod p) if p= 3122 + 12zy + 9y? # 31.

20



Corollary 4.4. Let p be a prime of the form 3n+ 1. Then

1 (mod p) if p= 2% + xy + 33192, 1922 + 11zy + 1992,
75 = 37;%9@/ (mod p) if p= 3722 + 3zy + 9y? # 37,
— 255 (mod p)  if p = 132% + 9wy + 27y* # 13,
(1 (mod p) if p =22 + 75y%, 322 + 2592,
105 = 7"’1557’ (mod p) if p="Tx?+6xy + 129> # 7,
[ — 5 (mod p) if p = 1922 + 2wy + 4y # 19,
(1 (mod p) if p = 2% + zy + 217y, 322 + 3zy + 73y,
17° = —52% (mod p)  ifp=Ta? +ay+31y2 £7,
\ —Bﬁ—}j‘”’ (mod p) if p = 1322 + 11lay + 19y # 13.

Remark 4.1. Let p = 1 (mod 3) be a prime and 4p = L? + 27M? with
LM €Z and L =1 (mod 3). When 2t M we choose the sign of M so

that M = L (mod 4). From Theorem 1.3 and [S1, Example 2.1] (or [Wi))
we deduce

2;71_{1(m0dp) if 2| M,
o %(—1—3LM) (mod p) if 21 M,
31,)_1_{1(modp) if 3| M,
L 3(-1+3%) (modp) if M ==+1 (mod 3),
e {1(modp> if 5| LM,
3 =
L(—1F-5) (modp) if & = +1,%2 (mod 5),
1 (mod p) if M =0,1 (mod 6),
655 = 1(—-1-3%) (mod p) if M =2,3 (mod 6),
1(—1+3%) (mod p) if M =4,5 (mod 6).

For p # 7 we also have

= {1 (mod p) if 7| LM,
3 =
1(—1+3) (mod p) if 55 ==+1,+4 (mod 7),
(1 (mod p) if 2| M and 5| LM,
orif 24 M and 55 = —1,-2 (mod 5),
05 = $(—1=3%) (mod p) if2|M and 5% =1,2 (mod 5),
N orif 2+ M cmd5|LM,
1(—1+ %) (mod p) if2| M and 3% = —1,-2 (mod 5),
| 0rzf2)(Mcmd - =1,2 (mod 5),
L7 { 1 (mod p) if 17| LM or 5% = £1,+3 (mod 17),
5 =
1(=1F %) (mod p) if £5% =2,4,-5,-6,7,—8 (mod 17).
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Now let us compare these results with Corollaries 4.3 and 4.4. As 4(7x%+
22y +4y?) = (v +4y)? +272% and 4(72? + 3zy +9y?) = (v +6y)? + 2722, it
is easily seen that the above results for 2", 3"5 (mod p) are equivalent

to those given in Corollary 4.3. As for 10%1, 175 (mod p), the results
in Corollary 4.4 are better than the above results. For general results

concerning ms (mod p), Theorem 4.3 seems better than Theorem 1.3.
If p= A%+ 3B? with A, B € Z and A =1 (mod 3), from [BEW, p. 147]
or [S4, (2.12)] we also have

p—1 _{ 1 (mod p) if B=0 (mod 3),
1(—=1-4) (mod p) if B=1 (mod 3).

Here we state the similar result for 3% (mod p) :

g5t { 1 (mod p) if B=0,+A (mod 9),
5=
i(-1-4) (mod p) if B=6,A+6 (mod9).

Theorem 4.4. Let p =1 (mod 3) be a prime. Let m be a cubefree integer
with m # 0,£1 (mod p) and m # 1 (mod 3). Let my be the product of all
distinct primes q satisfying q | m and q > 3. Let k3 be given by (4.1) and
k= #kgmo. Then m (or —m) is a cubic residue of p if and only if
p can be represented by some class in the set

G(m) = {[a,b, d | [a,b,d] € H(=3K?), (a,6m) =1,

((m— )b+ k(m + 1)(1+2w)> _ 1}'
a 3

Moreover, G(m) is a subgroup of index 3 in H(—3k?).

Proof. Let u = (1+m)/(1+m,2),v=(1—-—m)/(1+m,2) and d = 1.
From (4.2), Lemma 4.1 and Theorem 4.2 we see that G(m) = G(u,v,d).
Hence, it follows from Theorem 4.2 that m's =1 (mod p) if and only
if p is represented by some class in G(m). Moreover, G(m) is a subgroup
of H(—3k?). For m = 2, clearly k = 6 and so |G(2)] = 1 = h(—3k?)/3.
For m # 2, it is easily seen that F(u? — dv?®) { 2u. Thus, by Theorem
4.2 we get |G(m)| = h(—3k?)/3. To complete the proof, we note that

m5 =1 (mod p) if and only if m is a cubic residue of p.

5. Criteria for Egp_(g))/g (mod p).

Let d > 1 be a squarefree integer, and let €4 be the fundamental unit
of the quadratic field Q(v/d). Then g4 = (m + nV/d)/2 for some m,n € N
and m? — dn? = +4. Let p = 1 (mod 3) be a prime such that (;—f) = 1.
If d € {2,3,5}, in 1973 E. Lehmer [L2] proved that ¢4 is a cubic residue
modulo p if and only if p = 22 +27dy? for some z,y € Z. In [S1], the author
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gave the criteria for 4 to be a cubic residue of p in the cases d = 6, 15, 21.
For a general related result one may consult [W].
When p > 3 is a prime such that (%) = (%), in the section we completely

3
determine the value of g(p (5)/3

quadratic forms.

(mod p) in terms of appropriate binary

Theorem 5.1. Suppose m,n,d € Z and m? —dn? = —4. Let p > 3 be a
prime not dividing d. Let

1 ifd#2 (mod4) and 9 | m,
b= 2 ifd=2 (mod 4) and 9| m,
3 ifd#2 (mod 4) and 91 m,
6 ifd=2 (mod4) and 91{m.

Suppose p = ax? + bxy + cy? with a,b,c,x,y € Z, b*> — 4ac = —3k?*d and
(a,6) =1. If pta, then

£) (mod p) if (trehm2e))

a

N (3) QQI;EC;;by\/_) (mod p) Zf (bnfk:m(1+2w))3 = w,

a

1
2 (
L)+ 2a]:;£by\/_) (mod p) if (W)g — w2

a

)

p—(2) (5) (mod p) (bn km(HQw))g =1,
(VYT () ) (o p) i ()
3(=(5) = 57) (mod p) f (M=bgsed) = o

Proof. Let u = m/(m,n) and v = n/(m,n). Since (') = —1 we see

that 3t n. Thus 3 1 (m,n) and 3 fv. Clearly u? — dv? = —4/(m,n)? and
d # 3 (mod 4). Using Definition 3.1 we see that

ol d)—{2 if d =2 (mod 4), ks d)—{B if 91 m,
2BY TV ifd22 mod4), YT it m

and so k(u,v,d) = ko(u,v,d)ks(u,v,d) = k. Since

p—(£)

2_d 2 p—(5)
<u v 63 (u+v\/a) 5

p

)(u2 — dv?)”

- <M> (—4)7%(%) (m, n)Pf &) <m+n\/_>

(m,n)

p—1 § m n\/_ m Tl\/_ p7;§>
-y )y el




by the above and Theorem 4.1 we obtain the result.
Remark 5.1 If d = 2 (mod 3), from m? — dn? = —4 we deduce 3 { m and
so 91 m.

Note that (2,0,27) ~ (29, —4,2) and (4,3,9) ~ (19,13,4). From Theo-
rem 5.1 and the theory of reduced forms we deduce the following corollaries.

Corollary 5.1. Let p be a prime such that p=1,5,7,11 (mod 24). Then

. mod i p = 2% + 5492,
(1 + \/§)T1 = g 7m]j—)3y fp 9 Y 9
T2 T2y V2 (mod p) if p="Ta? + 6zy + 9y £ 7,
—1 (mod p) if p = 222 + 27y2,

(1+¢§)‘”‘§lz{

+ 2582 (mod p) if p=5a® + 2xy + 11y # 5.

Corollary 5.2. Let p be an odd prime such that p = 1,2,4,8 (mod 15).

Then
<1+\/5>"§1_ (modp) if p= 2% + xy + 3412,

2 - 38%’;33’\/_ (mod p) if p= 1922 + 13zy + 4y # 19,
(1+\/5>"§1 1 (modp) if p=5z% + bry + 8y?,

2 o % — 3%”(3)27’\/5 (mod p) if p=172% + xy + 2y* # 17.

Corollary 5.3. Let p > 3 be a prime such that ({%) = (%§). Then

17
(4+\/1_7)p3;1 _ (mod P) if p= 2% + xy + 11592,
T -3+ 261%_2"39\/— (mod p) if p = 1322 + 3zy + 9y? # 13,
(4+\/ﬁ)p7+1 —1 (mod p) if p= 1122 + Sxy + 1192,
3 = . _
- lg();;’\/l? (mod p) if p=5x% + zy + 23y* # 5.

Corollary 5.4. Let p > 3 be a prime such that (§7) = (%§). Then

—

— - 1 (mod if p=a® + xy + 277y,
(824 5V41)T = E 62121—31; .fp ) Y Y )
—5 + “355, V41 (mod p) if p = 31x? 4 3xy + 9y° # 31,

(32 4 5v/AT)2E = —1 (mod p) if p = 1722 + Tzy + 1732,
- 22;2:;5” V41 (mod p) if p= 1122 + 9zy + 27y* # 11.
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Theorem 5.2. Suppose m,n,d € Z and m? — dn? = —4. Let p > 3 be a
prime such that (_T?d) = 1. Let k be as in Theorem 5.1 and
Si(m,n,d) :{[a, b,c] | la,b,c] € H(—3k?d), a =i (mod 3),

2a, (bn—kma(1+2w)>3 _ 1} (i=12).

(i) If p =1 (mod 3), then (m + nvd)/2 is a cubic residue of p if and
only if p is represented by some class in S1(m,n,d).

(i) If p = 2 (mod 3), then (mtpv/dys5"
is represented by some class in Sa(m,n,d).

= —1 (mod p) if and only if p

Proof. Let w = m/(m,n) and v = n/(m,n). Then (u,v) =1, (m,n) =
1,2 and u? — dv? = —4/(m,n)?. From Theorem 4.1 and the proof of
Theorem 5.1 we know that

uw—vvd p_ég) m—+nvd p—;g>
(vg) =G 7 e

By the proof of Theorem 5.1 we have k = k(u,v,d). Hence applying the

b

r—(3)
above and Theorem 4.2 we see that (M) ? = (%) (mod p) if and
only if p is represented by some class in the set

G(u,v,d)

bn — km(1 +2w)>3 _ 1}'

a

= {[a,b, d | la,b,c] € H(—3k?d), (a,6) =1, (

Clearly G(u,v,d) = S1(m,n,d) U Se(m,n,d).

Since (%W) = (_T?d) = 1, p can be represented by some class in
H(—3k2d). Suppose p = az? + bry + cy? with a,b,c,z,y € Z, (a,6) = 1
and b? — 4ac = —3k3*d. As dap = (2az + by)? + 3k*dy? and 3 1 ap, we see
that ap = 1 (mod 3) and so p = a (mod 3). Now combining the above with
Euler’s criterion we obtain the result.

Theorem 5.3. Suppose m,n,d € Z, dn # 0 and m? —dn? = 4. Let p > 3
be a prime not dividing d. Let

1 if d=0,1 (mod 4) and 9 | m,
. 2 if d=2,3 (mod 4) and 9 | m,
gordsn-+1 ifd=0,1 (mod 4) and 91 m,
2. 30rdsntl it 4 =2 3 (mod 4) and 91 m.
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Suppose p = ax? + bxy + cy? with a,b,c,x,y € Z, b*> — 4ac = —3k?*d and
(a,6) =1. If pta, then

(m—i—n\/E) .
2
1 (mod p) if (%(HQW)):& =1,
— _%(1+(§)2aa¢+by\/—) (mod p) va(bn—kn;(1+2w))3 = w,
%(_ 1+(§)2am+by\/_) (IIlOd p) Z-f(bn—kn"zl(l—FQw))S — w2
If p|a, then
<7n,+—rvvﬂj) —(%)
2
1 (mOd p) (bn km(1+2w))3 17
— bn—km w
=0 3(= 1+ (BRF) (mod p) if (P=Rgd), =,
bn—km w
-1 R o) (2ot
Proof Let w = m/(m,n) and v = n/(m,n). Then (u,v) = 1 and
u? — dv? = 4/(m, )2. One can easily show that

(mod p).

u — v\/c_l) Lo
u+vvVd
Thus applying Theorem 4.1 we obtain the result.
Remark 5.2 If d = 0,1 (mod 3) and m? — dn? = 4 with m,n,d € Z, we
must have 31m and so 9t m.

Observe that (2,0,81) ~ (83,—4,2) and (9,6,10) ~ (13,12,9). From
Theorem 5.3 and the theory of reduced forms we have the following results.

. (m + n\/c_i) p7§§)

k = k(u,v,d) and ( = 5

Corollary 5.5. Let p=1 (mod 4) be a prime. Then
r—(%)
(2+V3) =
(mod P) if p= 2% + 81y%, 222 + 2xy + 4132,
={ —3 13x+6y\/_ 3 (mod p) if p= 1322 + 122y + 9y? # 13,
—% - 5:§-§;y\/— (mod p)  if p= 522+ day + 17y? # 5.
Corollary 5.6. Let p > 3 be a prime such that p = 1,3 (mod 8). Then
r—(3)
(5+2v6) =
(mod p) if p =22+ 162y%, 222 + 81%2,
= —5 — 19$+3y\/_ 6 (mod p) if p= 1922 + 62y + 9y? # 19,

—= 11;52/53’\/_ (mod p) if p = 1122 + 10xy + 17y # 11.
From Theorems 4.2, 5.3 and the proofs of Theorems 5.2 and 5.3 we have
the following theorem.
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Theorem 5.4. Suppose m,n,d € Z, dn # 0 and m? —dn® = 4. Let p > 3
be a prime such that (_T?d) = 1. Let k be as in Theorem 5.3 and

T;(m,n,d) :{[a,b, d | la,b,c] € H(—3k?d), a =1 (mod 3),

240, (bn—km(l—i—Zw))S _ 1} (i=1,2).

a

(i) If p =1 (mod 3), then (m + nvd)/2 is a cubic residue of p if and
only if p is represented by some class in Ty(m,n,d).

(ii) If p =2 (mod 3), then (%&)%ﬂ =1 (mod p) if and only if p is
represented by some class in To(m,n,d).

If m,n,d € Z with m?> — dn? = 4 and dn # 0, then clearly (m —
2)(m + 2) = dn? and so ordz(m — 2) + ordz(m + 2) > 2 ordsn. Hence
ordz(m — 2) > ordsn or ords(m + 2) > ordsgn. Thus we may choose the
sign of m such that ords(m — 2) > ordsn.

Theorem 5.5. Suppose m,n,d € Z, m?> — dn? = 4 and ordz(m — 2) >

ordsn. Let p > 3 be a prime such that ptdn. Let 2% || % Let

2 ifd=2,3 (mod 4),

ka=< 2 ifd=1 (mod8), a >0 and a =0,1 (mod 3),
1 otherwise,
3 if9¢ (m 3 n) ,

k3 = and k= kzkg.
1 if 9| (m72,n)

Suppose p = ax® + bry + cy? with a,b,c,x,y € Z, b*> — 4ac = —3k?*d and

(a,6(8 —4m)/(m

m+nvdy\” =t
("5
1 (mod p)

= { 4(~1- (B)252 V) (mod p)

—2,n)%) =1. If pfa, then

if ( oSy + G (HZUJ))

a

5 =1

k(m—2)
+ 142
Zf((m 2n) (m— 211,)( w))

a

3 Y
k(m—2)

H- L+ (B2 V) (mod ) (EEEEB0I) _p
Ifp| a, then

<m+n\/a) p_ég)

2
s a2 (14-2w)

1 (mod p) if ( - )3 =1,

fr— m—2,n + k;r(;n i) (1+2w)

=9 3(=1+(5F) modp) if (- 2><p2> )g =,
H(- 1= (557 (mod p) o (TR0 2

27



Proof. Let u = (2—m)/(m—2,n) and v =n/(m—2,n). Then (u,v) =1,
3tvand u? —dv? = 4(2—m)/(m —2,n)?. Since ords(u? — dv?) = ordzu —
ordsn, using Definition 3.1 we see that ko (u,v,d) = ko, k3(u,v,d) = k3 and
so k(u,v,d) = ka(u,v,d)ks(u,v,d) = koks = k. It is easy to see that
m+n\/a_ u—v\/a m+n\/a>p_é3)

2 u + U\/C_Z 2
Now the result follows from the above and Theorem 4.1.

As an example, putting d = 7, m = —16 and n = —6 in Theorem 5.5

and noting that (25,12,9) ~ (9,6,22) we deduce the following corollary.

Corollary 5.7. Let p > 3 be a prime.
(i) If p=1 (mod 3) and (%) =1, then
(84 3VT)5
1 (mod p) if p= a2 + 18992, Tx? + 2742,
={ —3— "5AVT (mod p) if p=192% + 2y + 10y # 19,
—3— 25$+6y\/_ 7 (mod p) if p = 2522 + 122y + 9y>.
(i) If p = 2 (mod 3) and (1—)) = —1, then

p+1

(8 +3V7)"3
1 (mod p) if p = 222 + 2xy + 9512
or 14z + 14xy + 1742,
p _54;32_+yy\/7 (mod p)  if p=5a*+ 2zy + 38y* # 5,
—3 — S5AVT (mod p) if p=112% + 6zy + 18y # 11,

If m? — dn® = 4 with m,n,d € Z, then m+'2'“/3 . —'m—;n\/a = —1. Thus
for any prime p > 3,

u—vvVd P
()

and so _—
( u—+ v\/E

<m+n\/3> Ega —m—l—n\/a) S
2 2

Now from Theorem 4.2 and the proof of Theorem 5.5 we deduce the fol-
lowing result.

=1 (mod p) <~ ( = 1 (mod p).

Theorem 5.6. Suppose m,n,d € Z, m? — dn? = 4 and ordz(m — 2) >
ordsn. Let p > 3 be a prime such that p{ dn and (_T?d) = 1. Let k be given

as in Theorem 5.5. Then (M)@_(%WS =1 (mod p) if and only if p
15 represented by some class in the set

L(m,n,d) = {[a, b, ] ‘ la,b,¢| € H(—3k2d), (a M) —1,

" (m —2,n)?
(<mb2n>+<n5 M))(sz)) :1}
a 3 '

Moreover, L(m,n,d) is a subgroup of H(—3k?d).
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6. Applications to Lucas sequences.
2
For P,(Q € Z and an odd prime p with (@) = 1, in the section
we will determine U(p_(g))/3(P, Q) and ‘/(p_(g))/g(P, @) modulo p, where
U,(P,Q) and V,, (P, Q) are the Lucas sequences given by

UO(P7 Q) = 07 Ul(P7 Q) = 17 Un—i—l(P; Q) - PUTL(P7Q)_QUH—1(P; Q)(n 2 1)

and

Vo(P,Q) =2, Vi(P,Q) = P, V1 (P, Q) = PV (P, Q)—QVy—1 (P, Q) (n = 1).

It is well known that
(6.1)
1 P4++/P2-4Q\n _ P—\/P2—-4Q\n if P2 _ 4 0
Un(PyQ): \/P2—4Q{( 2 ) ( 2 ) } 1 Q% ’
n(£)n-1 if P2 —4Q =0

and

P4+ \/PP—4Q\n (P —\/PZ—4Q\"
62)  Vu(PQ) =( . )+ ( 5 )"
Theorem 6.1. Let p > 3 be a prime, and P,Q € Z with p { Q and
(@) = 1. Assume P?—4Q = df? (d, f € Z) and p = ax*+bxy+cy?
with a,b,c,z,y € Z, (a,6p-4Q/(P, f)?) = 1 and b* — dac = —3k?d, where
k= k(P/(P.f), f/(P, f),d). Then

Up—(2))/3(P, Q)

_bf kP (149,
( 0 (mod p) if ( @~ (2 )) —1,

ol

p—

€3 bf _ _kP
~%  (mod p) Z’f<<P’f> (P,f)(1+2“’)> =w,

2 (EH(=Q)

e - py) o (B e (142w)
\ 2kd?;y(TQ)(_Q) 5 (mod p) Zf((P,f) .5 ) — 2

ol

and
Vip—(2))/3(P, Q)

2(5)(59)(-Q)
—(2)(_769)(—@)10 _— (mod p) Zf(<P ¥ (Paf)(1+zw)> 21,

Proof. Since pta@ and (a,y) | p we see that p{ ky and (a,y) = 1. Let
u=P/(P,f)and v = f/(P, f). Then (u,v) = 1 and u®—dv?® = 4Q/(P, f)?.
For n € N it is clear that

<—UQ v ) (u? — dv®) " (u £ vVd)*" = <Q>Q_" (—P & fx/E)Zn

P 2

A (i)
3
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Thus applying (6.1) and (6.2) we see that

<—U2 — dvz)(qf - dv2)_"{(u +oVd)* — (u— v\/a)%}

p
— ()@ Vi, r.0)
and
(#) (u? — dUQ)fn{(u + v\/gl)zn + (u — v\/a)%}

= (%)Q_nVQn(Pv Q).

Now set n = (p — (£))/6. If (2=rullt2e)) = then (M-wl=hullie)y
1. Observe that k(u,v,d) = k(u, —v, d). By the above and Theorem 4.1 we
have ( )Q ”f\/_Ugn(P Q)=1—-1=0 (mod p) and ( Q" Von (P, Q) =

1+1=2 (mod p). Thus

p| Usn(P,Q) and Va,(P,Q) = 2(%)6}” (mod p).

1

= wT'. From the above

If (bv—kuc(bl+2w)) _ wi17 then (b(—v)—lzu(1+2w))3
and Theorem 4.1 we have

_1:!:(§)2a1‘+by\/_ _1i(3)2a$+by\/_

(%)avavu(p.a) =

2 2
= :F<§> —QQZ;; by\/a (mod p)
and
1 P 2am+by\/_ 14 (B an—i-by\/_
(%)Q_nvzn(P, Q=—" (3)2 (3>2
= —1 (mod p).
Thus B O\ - 20z 1 by
UZn(P; Q) - <_) (E)Q Tfy (mod p)
and o
Von(P,Q) = — ;>Q" (mod p).

To complete the proof, we note that
Remark 6.1 According to (6.1), (

)0 =(G)(6) = (5 = (5)-
.2) and Theorem 4.1, the criteria for
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P Up—(z))3(P,Q) and V(,_(zy/3(P, Q) (mod p) in Theorem 6.1 are also
true when p = a.

If pt @ and (W) = —1, from [S2, Theorem 2.1] we know that

Qs )_1(—Px2 +2Qz + 2PQ) (mod p)

where z is the unique solution of the congruence X3 — 3QX — PQ =
0 (mod p).

Putting P =6, Q =3m + 9, d = —3m and f = 2 in Theorem 6.1 we
deduce the following result.

Corollary 6.1. Let p > 3 be a prime, and m € Z with p f m + 3 and
(%) = 1. Assume p = az?®+bry+cy? witha,b,c,z,y € Z, (a,6p(m+3)) =1
and b* — 4ac = 9k*m, where k = k(3,1,—3m). Then

Up-(2)/3(6,3m +9)
0 (mod p) if (M)3 =1,

a

(Wis]

p—(3)

ax —3m— r—(3) ) b—3k w
= o Zetby(=sme9) (g — )% (mod p) if (U =,

IS]

p— (%)

ar —3m— 3 o (b—3k(1+2w
A (S (<3m — )5 (mod p) if (S = o2

and

V(p—(%))/s(&3m+9)

p—(%)

2(B)(Z3m=0)(~3m — 9) % (mod p) if (LU,

ol

p—(3)

—(B)(F22=2)(=3m — 9) v (mod p) if (P22 g

If m,n,d € Z and m? + 4 = dn?, from (6.1) and (6.2) we have

m n\/_ r 7n/—-nx/_ T
i = L (Y (o
i) = (Y (2

Thus applying Theorem 5.1 or Theorem 6.1 we deduce the following result.
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Corollary 6.2. Suppose d,m,n € Z and m? +4 = dn?. Letp > 3 be a
prime such that p { m? + 4 and (%1) = 1. Let k be as in Theorem 5.1.
Suppose p = ax? + bry + cy? with a,b,c,x,y € Z, b*> — 4ac = —3k?d and
(a,6p) =1. Then

azx . bn—km (142w
Up,ég) (m,—1) = —2kd25y (mod p) if (—a( + ))3 =w,
St (mod p) if (M), = 7
and
. bn—km w
by [ 2B o) (e
p—(%) T =

(5 _(g) (mod p) if (w&:w,wg

From (6.1), (6.2) and Corollaries 5.6, 5.7, 5.3, 5.4 (or Theorem 6.1) we
have the following four corollaries.

Corollary 6.3. Let p > 3 be a prime such that p = 1,3 (mod 8). Then

0 (mod p) if p= 122 +162y%, 222 + 8132,
U,z (10,1) = — 22 (mod p) if p = 192% + 6wy + 9y* # 19,
3 % (mod p)  if p= 112 4+ 10xy + 17y* # 11
and
Vo2 (10,1) = { 2(modp) — ifp=a”+162% 2%+ 817,
gt ’ —1 (mod p) otherwise.

Corollary 6.4. Let p > 3 be a prime.
(i) If p=1 (mod 3) and (%) =1, then

0 (mod p) if p = x? + 189y2, Ta? + 2742,
Up1(16,1) = { — 55 (mod p)  if p =192 + 2y + 10y # 19,
3
_ 25z+6y

56y (mod p) if p = 2522 + 122y + 9>

and

2 d fp=a%+ 189y?, 7x% + 27y,
Vies (16,1) { (mod p)  ifp=x Y, Tz y

—1 (mod p) otherwise.
(ii) If p=2 (mod 3) and (%) = —1, then

0 (mod p) if p = 2a? + 2xy + 95>
or 14z? + ldzy + 17y,
Upt1 (16, 1) = _51m2-g3 (mod p) pr — 5$2 + 21’y + 38y2 7& 5;
— 5 (mod p) if p=11a% + 6ay + 18y # 11
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and
2 (mod p)  if p =222 + 2wy + 95y
VpTH(16, 1) = or 14x?% 4 14zy + 1732,
—1 (mod p) otherwise.

Corollary 6.5. Let p be a prime greater than 3 such that (%) = (%).

17
Then
0 (mod p) if p= 2%+ zy + 115>
or p = 11z* + bxy + 11y,
Up*ég) (87 —1) = 261%J2r5y (IIlOd p) pr — 13:1;2 + 3$y + 9y2 7& 13;
— 10250 (mod p) if p = 5% + zy + 23y £ 5
and
2 (mod p)  ifp=a”+xy+ 115y,
—2 (mod p) if p= 1122 + by + 1132,
Vo2 (8,-1) =

5 —1 (mod p) if p = 1322 + 3zy + 932,
1 (mod p)  if p=5x% + xy + 23y°.

Corollary 6.6. Let p be a prime greater than 3 such that (1) = (§).

Then
0 (mod p) if p = 2% + xy + 277y>
or p=172% + Tzy + 17y?,
Up_ég) (64,-1) = Gf%zy (mod p) if p=31z? + 3zy + 9y? # 31,
22249y

1230y (mod p) if p=112% + 9zy + 27y # 11
and

2 (mod p) if p= 22 + xy + 277y2,
V. (64, 1) —2 (mod p) if p= 1722 + Txy + 1732,
L ’ —1 (mod p) if p = 3122 + 3zy + 992,
1 (mod p)  if p= 1122 + 9zy + 27y>.

Putting m =3, n =1, d =13 and k£ = 3 in Corollary 6.2 and observing
that (10,7,10) ~ (13,13,10), (25,7,4) ~ (4,1,22), (43,37,10) ~ (9,—3,10)
and (47,5,2) ~ (2,—1,44) we deduce the following result.

Corollary 6.7. Let p > 3 be a prime.
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(i) If p=1 (mod 3) and ({5) =1, then

0 (mod p) if p= 2% + xy + 88y?
or p = 1022 + Tzy + 1032,
Upea (3, -1) = % (mod p) if p = 252% + Tzy + 4y?,
— S (mod p) if p = 432% + 37wy + 10y> # 43
and
2 (mod p) if p= 2% + xy + 88y>
Ve (3,-1) = or p = 1022 + 7xy + 10y?,

—1 (mod p) otherwise.

(ii) If p =2 (mod 3) and ({5) = —1, then

0 (mod p) if p = 1122 + zy + 8y?,
Uper (3,—1) = { %55, (mod p) if p =52 + 3wy + 18y> # 5,
94x+5y

307 (mod p) if p = 4722 + Sxy + 2y? # 47

and

-2 d fp = 1122 8y?,
Vpgl(?)?_l)z{ ((mo p) ifp=1lz*+ 2y +8y

1 (mod p)  otherwise.

From Corollary 6.2 we also deduce the following results.

Corollary 6.8. Let p > 5 be a prime such that (_730) =1.
(i) If p=1 (mod 3), then

0 (mod p) if p = 22 + 270y2, 1022 + 2742,
Ui (6,-1) = — 35 (mod p) if p = 31a% + 6xy + 9y* # 31,
_% (mod p) if p= 1322 + 8zy + 22y> # 13
and
Vs (6,—1) = { 2 (mod p) if p= a2 +270y%, 1022 + 2742,
R —1 (mod p) otherwise.

(ii) If p=2 (mod 3), then

0 (mod p) if p =222 + 135y%, 5% + 54y?,
Uppa (6,-1) = Ho (mod p) if p = 112 + 8zy + 26y> # 11,
Mot (mod p) if p = 172 + 120y + 182 £ 17
and
Vo (6, 1) = { —2 (mod p) if p= 227 + 1352, ba? + 54y?,
o 1 (mod p) otherwise.
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B =®).

w

Corollary 6.9. Let p > 3 be a prime such that (£)(
(i) If p=1 (mod 3), then

0 (mod p) if p= 2% + xy + 649>

or p = 3x? + 3zy + 22y,
Unpn 0 =1) =4 88541 (104 ) if p = 1922 + Tay + 49 £ 19,

85y
14§;;,5y (mod p) if p=Tx®+ Sxy + 10y> £ 7

and
if p= 12 + 2y + 649>
or p = 3z% + 3zy + 2292,

—1 (mod p) otherwise.

2 (mod p)

VpT—l (9,—1)

(ii) If p=2 (mod 3), then

0 (mod p) if p= 822 + zy + 8y?

or p = 5x? + by + 1492,
UpTl (9,-1)= Mf”% (mod p) if p = 3522 + bxy + 2y2,

— 2 (mod p) if p =112 + 3wy + 6> # 11
and
or p = 5x% + by + 1432,

Vis (9,-1) =
1 (mod p) otherwise.

Corollary 6.10. Let p > 3 be a prime such that (_778) = 1.

(i) If p=1 (mod 3), then
if p= a2 + 702y2, 1322 + 5492,

0 (mod p)
Up1(10,-1) =< — l?gg;y (mod p)  if p = 1922 + 22y + 37y* # 19,
3
— T (mod p)  if p = T92% + 6wy + 9y* # 79

and
if p= a2 + 702y%, 1322 + 5442,

2 d
i = [ Hom) =
3 —1 (mod p) otherwise.

(ii) If p=2 (mod 3), then
if p = 222 + 351y2, 262 + 27y2,

0 (mod p)
_ _ 29z+49y d . — 99 2 18 97 9 29
UPTH(m?—l): 156y (mod p) if p x° + 18xy + 27y~ # 29,
Zufg—gy@ (mod p) if p=412? + 122y + 18y? # 41
and
if p= 222 + 351y?, 2622 + 27y?,

—2 (mod p)
Vp 1 10, _1 =
e ) { 1 (mod p) otherwise.

3

We note that the congruences for U, (z))3(1, —1) and U, (2))/3(2, —1)

(mod p) have been given by the author in [S1].
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Lemma 6.1. Let p > 3 be a prime and P,Q € 7 with p ¥ PQ(P? — 4Q).
Letn— (p - (£))/6.

() If | Un(P, Q) or p | Usn(P,Q), then (2 =19) = 1,

(ii) Suppose (@) = 1 and P? — 4Q = df? (d,f € Z). Then
p | Uan (P, Q) if and only if (w)zn = (%)Q” (mod p).

(iii) p | Uan(P, Q) if and only if Van (P, Q) = 2(%)@” (mod p).

(iv) p | Un(P, Q) if and only if (%) =1 and p| Usp(P,Q).

Proof. Let U,, = Uy(P,Q) and V,, = V,,,(P,Q). For k,m € N it is
well known that U,, | Ugy. Thus U, | Us, and Uy, | Up—(2). If p| Uy, or

p | Uzn, we must have p | U, () and so (@) = 1 by [S1, Lemma
6.1]. This proves (i).
Now suppose (@) =1 and P? — 4Q = df? with d, f € Z. From
(6.1) we see that
P— fVd
P+ fVd
By the proof of Theorem 4.1, we have
P — fVd\2r  /P? — df?
Grrva) =
Q\ n (P +fVd
Gl (%

p| Uz <= < >2n =1 (mod p).

(P2 — )~ (P + fVa)

>2n (mod p).

Thus (ii) is true.
Now let us consider (iii). If p | Uap, by (i) and (ii) we have (

1 and (ﬂ)?ﬂ (%)Q” (mod p). Thus V3, = 2(%)@" (mod p) by
(6.2). If Vs, = 2(%)@” (mod p), as V.2 — (P? —4Q)UZ2 = 4Q™ we see that
4Q?%" — (P% — 4Q)U3, = 4Q*" and hence p | Uy,. So (iii) holds.

Finally we consider (iv). According to [S1, Lemma 6.1], p | U, if and
only if V5, = 2Q™ (mod p). On the other hand, p | U,, implies p | Us,, and so
Von = 2(%)@” (mod p) by (iii). Hence p | U,, implies (%) = 1. Conversely,
if p | Uay, and (%) = 1, by (iii) we have V3, = 2(%)@” = 2Q" (mod p).
Hence p | U,,. So (iv) holds and the proof is complete.

Suppose that d > 1 is squarefree and e4 = (m+n+/d)/2. Then the norm
N(gq) = (m? —dn?)/4 = +£1. From Lemma 6.1(ii) we see that if p is a
prime such that p =1 (mod 3), pt mn and (%) =1, then

m VDY 1 (wod p)

= p| Upa(m, N(ea)).

—3(P2-4Q)
T)

(6.3) €4 is a cubic residue of p <= <
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Theorem 6.2. Letp > 3 be a prime, and P,Q € Z with pt PQ(P? —4Q).
Let P? —4Q = df? (d,f € Z) and k = k(P/(P, f), f/(P, f),d). Let

M(P,Q, f) :{[a,b, d ( la,b,¢] € H(—3k2d),

b o
(a,24Q/(P. f)?) = 1, (2L w2 )>3:1}.

a

(i) M(P,Q, f) is a subgroup of H(—3k*d). If F(4Q/(P, f)*) 1 (2P/(P. f)),
then |M(P,Q, f)| = h(—3k*d)/3.

(i) p | Ugp- (@))/3(P Q) if and only if p is represented by a class in

M(P,Q, f).

(iti) p | Up—(2y)/6(P: Q) if and only if (%) =1 and p is represented by
a class in M (P,Q, f).

Proof. Set w = P/(P, f) and v = f/(P, f). Then (u,v) =1, u® — dv?® =
4Q/(P, f)? and k = k(u,v,d). It is easy to see that M (P, Q, f) = G(u,v,d).
Thus applying Corollary 3.2 we see that (i) holds. Using Lemma 6.1 and
Theorem 6.1 (or Theorem 4.2) we deduce (ii) and (iii). So the theorem is
proved.
Remark 6.2 In [S1], the author misunderstood Spearman-Williams’ result
in [SW1] since a subgroup of index 3 may be not the subgroup consisting
of all cubes. Thus (5.5), Lemma 5.1, Theorem 5.4, Corollaries 5.3, 5.4 and
6.4 in [S1] are somewhat wrong. Now we have Theorem 6.2 instead of [S1,
Corollary 6.4], and Corollary 4.2 instead of [S1, Corollary 5.4].

From Lemma 6.1 and Theorem 5.2 (or Theorem 6.2) we have:

Corollary 6.11. Letp > 3 be a prime, m € Z, pt m(m?+4) and m?+4 =
dn? (d,n € Z). Let k be as in Theorem 5.1. Then p | Up—(2))/3(m, —1)

if and only if p is represented by some class [a,b,c] € H(—3k*d) with
(a,6) =1 and (W):s =1.

a

From Corollaries 6.3-6.6 or Theorem 6.2 we have:

Corollary 6.12. Let p > 3 be a prime.
(i) If p # 5, then p | U,_»,(10,1) if and only if p is represented by
r=(5)

22 +162y% or 222 4 81y2.
(ii) If p # 7, then p | U,_(»,(16,1) if and only if p is represented by

3
x? 4+ 189y2, Tx2 + 27y?, 222 + 2zy + 95y% or 142 + ldxy + 17y>.
(iii) If p # 17, then p | U,_ (B v, (8,—1) if and only if p is represented by

2% 4+ 2y + 115y or 1122 + 5acy + 1132,
(iv) If p # 5,41, then p | U,z (64, —1) if and only if p is represented

3
by 2% + zy + 277y? or 1722 + Tay + 17y>.
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Corollary 6.13. Let p # 2,3,13 be a prime.
(i) If p=1 (mod 6), then

Pl Up1(3,-1) <= p = x2 + 351y?, 1322 + 27y?,

PlUx1(3,-1) < p= z? + 1404y2, 1322 + 108y°.

Moreover, if p =1 (mod 6) and ({5) = 1, then ez = (34+13)/2 is a cubic
residue of p if and only if p is represented by x* + 351y* or 1322 + 27y>.
(ii)) If p=5 (mod 6), then

D | ULéJ(S,_l) — p=112% + 2zy + 329,

p|Upsi(3,-1) <= p=4la” +40zy + 44y,

Proof. By Lemma 6.1(i), we may assume ({3) = (¥). From Corollary
6.7 and Theorem 6.2 we see that if p =1 (mod 6), then

plUn1(3,-1) <= p= 22 + zy + 88y, 102% + Tzy + 10y?
p|ULgl(3,—1) — p=4k+1 =2+ zy + 88y?, 10z + Tzy + 10y>;
if p=>5 (mod 6), then
D | UpT-i-l(?),_l) = p=112% + zy + 8&? < p = 1122 + 2zy + 324>,
PlUpt2(3,-1) = p=4k+1= 112? + 2zy + 32y°.
For p =1 (mod 6) we see that

p=a>+ay+88y? <= p=2a®+ay+88y* with2|y
— p =24 2zy +352y° = (z +y)* + 351y
< p=1t>+ 351y*

and

p = 102* + 7wy + 10y?
<= p=102% + Toxy + 10y* with 2} xy

T+y x—y\? r+y T—y\[/r+y T—Y
= p=10( ) +7( (= -5
b > T2 ) T T 2 2
_ 2
+10(m—;y_x2y) with 2 1 zy

= p=10(t+u)? + 7(t +u)(t — u) + 10(t — u)?

— p=13u? + 27t%
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Thus
plUp-1(3,-1) <= p=dk+1= 2?2 4+ zy + 88y, 102% + Tzy + 10y>
— p=4k+1=2%+351y° 132>+ 27y
= p=2x?4351y% 132> +27y* with 2|y
— p=ax?+41404y%, 132> + 108y>.

Now applying (6.3) we obtain (i).
For p =5 (mod 6) we have

p|Up%1(3,—1) — p=4k+1= 112> + 2zy + 32>
= p=112% + 20y +32y* with 2|z —y
< p=11(y + 2t)* + 2(y + 2t)y + 32¢°
= p = 441% + 48ty + 459>

Observe that (44,48,45) ~ (44, —40,41) ~ (41,40,44). We see that (ii) is
true. The proof is now complete.

Using Theorem 6.2 and (6.3) one can similarly prove the following corol-
laries.

Corollary 6.14. Let p > 5 be a prime.
(i) If p=1 (mod 6), then

plUp1(6,-1) <= p= z? 4 270y, 1022 + 27y2,
Pl Up1(6,-1) < p=a”+1080y* 372" + 3dwy + 37y°.
Moreover, if p =1 (mod 6) and (%) =1, then €10 = 3+ V10 is a cubic

residue of p if and only if p is represented by x* + 270y? or 10z2 + 27y>.
(ii) If p =5 (mod 6), then

Pl Upsi(6,-1) < p= 222 4+ 135y2, 5z2 + 54y?,
p|Upsa(6,-1) <= p= 82 + 8zxy + 13742, 5z% + 216y
Corollary 6.15. Let p # 2,3,5,17 be a prime.
(i) If p=1 (mod 6), then
Pl Ue1(9,-1) <= p= x? 4 25592, 322 4 85y,
P Up1(9,-1) <= p= 2?2 + 102092, 1222 + 85y°.
Moreover, if p=1 (mod 6) and () = (&), then es5 = (9 + V/85)/2 is a

cubic residue of p if and only if p is represented by x> +255y% or 3x% +85y>.
(ii) If p =5 (mod 6), then

Pl U (9,-1) <= p= 522 4+ 51y%, 1722 + 1592,
PlUpa(9,-1) <= p= 522 4+ 204y?, 1722 + 60y2.
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Corollary 6.16. Let p # 2,3,5,13 be a prime.
(i) If p=1 (mod 6), then
P Up1(10,-1) <= p= 2?2 4+ 702y2, 1322 4 5442,
p|Up1(10,-1) = p= x? 4 2808y?, 13z% + 216>

Moreover, if p =1 (mod 6) and (2?6) =1, then 96 = 5+ V26 is a cubic
residue of p if and only if p is represented by x* + 702y? or 13z2 + 54y2.
(ii) If p=5 (mod 6), then
Pl Up(10,-1) = p= 222 + 351y2, 2622 + 27y,
Pl Ups(10,-1) = p= 822 + 8xy + 353y, 53z + 2xy + 53y°.

Theorem 6.3. Supposem € Z, m*—4 = dn? (d,n € Z) and ordz(m—2) >
ordzn. Let p > 3 be a prime such that p{m? — 4. Let k be as in Theorem
5.5. Suppose p = ax? + bxy + cy?® with a,b,c,x,y € Z, b*> — 4ac = —3k?d,
pta and (a,6(8 —4m)/(m —2,n)?) = 1. Then

k(m—2)

bn 142
0 (mod p) if ( (m=2,n) (W;—Q,n)( + w)>3 1,
U = ar+ . En + k(”f72) 1+2w
p—(%) (m,1) = —(g) dengy (mod p) if ( (m=2,n) (ma zn ( ))3 w,

. bn + k(m—2) 142
Zf ( (m—2,n) (m—2,n) ( UJ)) o w2

@ =

3

b
(5) %y (wod p)

and
bn k(m—2) 1+2
V1) =4 (mod p) if (T2 ma ) g
p_ég) ’ N . (7nig n)+(k;r(LT2_'2n)) (1+2LU) 2
—1 (mod p) zf( ’ p— )3=w,w .

Proof. As m? — 4 = dn?, from (6.1) and (6.2) we have

U (m, 1) = 1 {<m+n\/3>7“_(m—n\/3>r}

nvd 2 2
m n\/_ r m n\/_ -r
- n\1/3{< +2 d) _< +2 d) }

Vi, 1) = (MEYAY (mo VY /Y om oy
T 2 2 - 2 5 .
Thus applying Theorem 5.5 we obtain the result.

From Lemma 6.1 and Theorem 5.6 we have:
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Theorem 6.4. Suppose m € Z, m?>—4 = dn? (d,n € Z) and ordz(m—2) >
ordzn. Let p > 3 be a prime such that p{m? — 4. Let k be as in Theorem
5.5. Then p | Uy (2y)/3(m,1) if and only if p is represented by a class in
the subgroup L(m,n,d) of H(—3k?*d), where L(m,n,d) is as in Theorem
5.6.

7. Cubic congruences modulo a prime.

Let p > 3 be a prime and ay, as, a3 € Z. Let Nyp(z® + a12? + aszw + a3)
denote the number of solutions of the congruence z2 + a12% + asx + a3 =
0 (mod p). Set

P2 4Q

(7.1) P = —2a3+9ajay —27a3, Q = (a? —3a3)®> and D= — o

From [S2, Lemma 2.3] we know that D is the discriminant of 23 + a;z? +
asx + a3 and

(7.2) Np(2® + a12® + agx + a3) = Np(2® — 3Qx — PQ) when p1{ Q.

It is well known that (see [D], [Sk] and [S2])

Oor3 if (2)=1,

p
(7.3) Ny(z® + ar2® + agr +az) = 3 if (%) =0,
1 if (2)=-1

p

If p{Q and p | P, by (7.2) we see that 23 + a2 + asz + az = 0 (mod p) is

solvable. Thus we need only to consider the congruence z3 — 3Qx — PQ =
2

0 (mod p) under the condition p{ PQ and (_%PT_LLQ)) = 1.

Theorem 7.1. Let p > 3 be a prime. Let P,Q € Z, p{ PQ(P? — 4Q),
P? —4Q = df? (d,f € Z) and k = k(P/(P,f), f/(P, f),d). Then the
congruence 3 — 3Qx — PQ = 0 (mod p) has three solutions if and only if p
is represented by some class in M (P, Q, f), where M(P,Q, f) is a subgroup
of H(—3k?d) given as in Theorem 6.2.

Proof. Clearly the discriminant of z® — 3Qz — PQ is —27Q*(P? —
4Q). Thus, by (7.3) we know that N,(z® — 3Qz — PQ) = 3 implies

J— 2_
( 3(Pp 4Q) )

implies (w) = 1. Thus, by [S1, Corollary 6.3] and (7.3) we have

= 1. From Lemma 6.1(i) we also see that p | U, (2)),3(P, Q)

(7.4) Np(z® =3Qx — PQ) =3 <= p|U,_z, (P, Q).

Now the result follows immediately from Theorem 6.2.
Putting P=2,d=1—- (@ and f = 2 in Theorem 7.1 and then applying
(7.4) one can deduce the following result.
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Corollary 7.1. Let p > 3 be a prime, Q € Z and p1 Q(Q — 1). Then the
following statements are equivalent:

(i) The congruence z3 — 3Qx — 2Q = 0 (mod p) has three solutions.

(i) p | Up—(z))/3(2, Q).

(iii) p is represented by some class [a, b, c] € H(3k*(Q—1)) with (a,6Q) =
1 and (M)g =1, where k = k(1,1,1 — Q).

a

Putting P=6,d =9 — @ and f = 2 in Theorem 7.1 and then applying
(7.4) we deduce the following result.

Corollary 7.2. Let p > 3 be a prime, Q € Z and p1 Q(Q —9). Then the
following statements are equivalent:

(i) The congruence 3 — 3Qz — 6Q = 0 (mod p) has three solutions.

(ii) p | Up—(2))3(6, Q).

(iii) p is represented by some class [a, b, c] € H(3k*(Q—9)) with (a,6Q) =
1 and (w)3 =1, where k = k(3,1,9 — Q).

From (7.4) and Corollary 6.11 we have

Corollary 7.3. Letp > 3 be a prime, m € Z, pf m(m? +4) and m? +4 =
dn? (d,n € Z). Let k be as in Theorem 5.1. Then x> +3x+m = 0 (mod p)
has three solutions if and only if p is represented by some class |a,b,c] €

H(—3k%d) with (a,6) =1 and (W)S =1.

a

From (7.4) and Corollaries 6.12-6.16 we have

Corollary 7.4. Let p > 3 be a prime. Then

(i) If p # 5, then N,(x® — 3z — 10) = 3 if and only if p is represented by
22 +162y% or 222 4 81y,

(ii) If p # 7, then Ny(z3 — 3z — 16) = 3 if and only if p is represented
by x% 4+ 189y2, Tx? + 27y?, 222 + 2zy + 95y% or 142 + 14xy + 17y>.

(iii) If p # 17, then N,(z® + 3z + 8) = 3 if and only if p is represented
by 22 + xy + 115y? or 1122 + 5xy + 1192,

(iv) If p # 5,41, then N, (x4 3z +64) = 3 if and only if p is represented
by 2 + xy + 277y> or 1722 + Txy + 17y>.

(v) If p # 13, then N,(a® + 3z + 3) = 3 if and only if p is represented
by 22 + 351y2, 1322 + 27y? or 1122 + 2zy + 32y°.

(vi) If p # 5, then Ny(x®+ 3z + 6) = 3 if and only if p is represented by
% 4+ 27042, 102% + 27y2, 222 + 13592 or 5a? + Hdy?.

(vii) If p # 5,17, then N, (x> +3x+9) = 3 if and only if p is represented
by x? + 255y2, 322 + 85y2, bx? 4+ 51y? or 1722 + 15¢2.

(viii) Ifp # 5,13, then N,(a*+3z+10) = 3 if and only if p is represented
by 2 + 702y, 1322 + 54y?, 222 + 351y> or 26x2 + 27y2.

Theorem 7.2. Let p > 3 be a prime and ai,as,a3 € Z. Let P and Q be

given by (7.1). Suppose pt PQ(P? — 4Q) and P? — 4Q = df? (d, f € 7).

Then the congruence x°+ayx?+asz+as = 0 (mod p) has three solutions if
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and only if p is represented by some class in M (P, Q, f), where M(P,Q, f)
is a subgroup of H(—3k?d) given as in Theorem 6.2.

Proof. This is immediate from (7.2) and Theorem 7.1.

Remark 7.1 Let us compare Theorem 7.2 with Theorem 1.4. First Spear-
man and Williams proved Theorem 1.4 using class field theory, and we
prove Theorem 7.2 using the theory of cubic residues. Second, the subgroup
M(P,Q, f) in Theorem 7.2 is constructed, but Spearman and Williams only
proved the existence of the subgroup J(ai,az,as). Third, in some special
cases, the discriminant of corresponding quadratic forms in Theorem 1.4
seems better than the discriminant in Theorem 7.2.
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