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Notation: Z the set of integers, N the set

of positive integers, [x] the greatest inte-

ger not exceeding x, {x} the fractional part

of x, ( a
m) the Jacobi symbol, Zp the set of

rational p−adic integers.
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§ 1. Definition of {Bn}, {En} and {Un}

The Bernoulli numbers B0, B1, B2, . . . are given

by

B0 = 1,
n−1∑

k=0

(n

k

)
Bk = 0 (n ≥ 2).

The first few Bernoulli numbers are given be-

low:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
,

B6 =
1

42
, B8 = − 1

30
, B10 =

5

66
,

B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
.

Basic properties of {Bn}:
B2n+1 = 0 for n ≥ 1.
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von Staudt-Clausen Theorem (1844):

B2n +
∑

p−1|2n

1

p
∈ Z,

where p runs over all distinct primes satisfying
p− 1 | 2n.

von Staudt-Clausen: pBk(p−1) ≡ −1 (mod p) (k ≥
1).

Kummer (1850): If p is an odd prime and p−1 -
b, then

Bk(p−1)+b

k(p− 1) + b
≡ Bb

b
(mod p).

The Euler numbers {En} are given by

E2n−1 = 0, E0 = 1,
n∑

r=0

(2n

2r

)
E2r = 0 (n ≥ 1).

The first few Euler numbers are shown below:

E0 = 1, E2 = −1, E4 = 5, E6 = −61,

E8 = 1385, E10 = −50521, E12 = 2702765.
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The sequence {Un} is defined by

U0 = 1 and Un = −2
[n/2]∑

k=1

( n

2k

)
Un−2k (n ≥ 1).

Clearly U2n−1 = 0 for n ≥ 1.

§ 2. p-regular functions

Definition 2.1 Let p be a prime. If f(0), f(1),
f(2), . . . are all algebraic numbers which are
integral for p, and for n = 1,2,3, . . .,

n∑

k=0

(n

k

)
(−1)kf(k) ≡ 0 (mod pn),

we call that f is a p-regular function.

Example 2.1 Let p be a prime, b ∈ {0,1,2, . . .}
and m ∈ N with p - m. Then

f(k) = mk(p−1)+b and g(k) = mk(p−1)+b−1

are p-regular functions.

(by Fermat’s little theorem and the binomial
theorem)
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Example 2.2 ([S1]) Let p be an odd prime and
b ∈ {0,1,2, . . .}. Then

f(k) = p(p− pk(p−1)+b)Bk(p−1)+b

is a p-regular function.

Example 2.3 ([S2]) Let p be an odd prime,
b ∈ N and p− 1 - b. Then

f(k) = (1− pk(p−1)+b−1)
Bk(p−1)+b

k(p− 1) + b

is a p-regular function.

Example 2.4 ([S3]) Let p be an odd prime and
b ∈ {0,2,4, . . .}. Then

f(k) =
(
1− (−1)

p−1
2 pk(p−1)+b

)
Ek(p−1)+b

is a p-regular function.

Example 2.5 ([S6]) Let p be an odd prime and
b ∈ {0,2,4, . . .}. Then

f(k) =
(
1− (

p

3
)pk(p−1)+b

)
Uk(p−1)+b

is a p-regular function.
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Lemma 2.1 Let n ≥ 1 and k ≥ 0 be integers.
For any function f ,

f(k) =
n−1∑

r=0

(−1)n−1−r
(k − 1− r

n− 1− r

)(k

r

)
f(r)

+
k∑

r=n

(k

r

)
(−1)r

r∑

s=0

(r

s

)
(−1)sf(s).

Proof. As
∑m

j=0(−1)j
(
x
j

)
= (−1)m

(
x−1
m

)
, we

find

n−1∑

r=0

(k

r

)
(−1)r

r∑

s=0

(r

s

)
(−1)sf(s)

=
n−1∑

s=0

n−1∑
r=s

(k

r

)(r

s

)
(−1)r−sf(s)

=
n−1∑

s=0

(k

s

) n−1∑
r=s

(k − s

r − s

)
(−1)r−sf(s)

=
n−1∑

s=0

(k

s

)
f(s)

n−1−s∑

j=0

(k − s

j

)
(−1)j

=
n−1∑

r=0

(−1)n−1−r
(k − 1− r

n− 1− r

)(k

r

)
f(r).
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By the binomial inversion formula,

f(k) =
k∑

r=0

(k

r

)
(−1)r

r∑

s=0

(r

s

)
(−1)sf(s).

Thus the result follows.

Theorem 2.1 Let p be a prime, n ∈ N, k ∈
{0,1,2, . . .} and let f be a p-regular function.
Then

f(k) ≡
n−1∑

r=0

(−1)n−1−r
(k − 1− r

n− 1− r

)(k

r

)
f(r) (mod pn).

Example: Let p be an odd prime, k ∈ {0,1,2, . . .},
n, b ∈ N and p− 1 - b. Then

(1− pk(p−1)+b−1)
Bk(p−1)+b

k(p− 1) + b

≡
n−1∑

r=0

(−1)n−1−r
(k − 1− r

n− 1− r

)(k

r

)

× (1− pr(p−1)+b−1)
Br(p−1)+b

r(p− 1) + b
(mod pn).

8



Using the properties of Stirling numbers we

deduce that:

Theorem 2.2 Let p be a prime. Then f is

a p-regular function if and only if for each

positive integer n, there are a0, a1, . . . , an−1 ∈
{0,1, . . . , pn − 1} such that

f(k) ≡ an−1kn−1 + · · ·+ a1k + a0 (mod pn)

for every k = 0,1,2, . . . . Moreover, we may

assume as · s!/ps ∈ Zp for s = 0,1, . . . , n − 1.

If p ≥ n and f is a p-regular function, then

a0, . . . , an−1 are unique.

Example: For k ∈ N,

B4k+2

4k + 2

≡ 625k4 + 875k3 − 700k2 + 180k − 1042 (mod 55),

E4k ≡ −750k3 + 1375k2 − 620k (mod 55) (k > 1).
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Lemma 2.2. Let p be a prime. Let f be a

p-regular function. Suppose m, n ∈ N and t ∈ Z
with t ≥ 0. Then

n∑

r=0

(n

r

)
(−1)rf(pm−1rt) ≡ 0 (mod pmn).

Moreover, if Ak = p−k ∑k
r=0

(
k
r

)
(−1)rf(r), then

n∑

r=0

(n

r

)
(−1)rf(pm−1rt)

≡





pmntnAn (mod pmn+1)

if p > 2 or m = 1,

2mntn
n∑

r=0

(n

r

)
Ar+n (mod 2mn+1)

if p = 2 and m ≥ 2.
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Theorem 2.3. Let p be a prime, k, m, n, t ∈ N,

and let f be a p-regular function. Then

f(ktpm−1)

≡
n−1∑

r=0

(−1)n−1−r
(k − 1− r

n− 1− r

)(k

r

)
f(rtpm−1) (mod pmn).

Moreover, setting As = p−s ∑s
r=0

(
s
r

)
(−1)rf(r)

we then have

f(ktpm−1)−
n−1∑

r=0

(−1)n−1−r
(k − 1− r

n− 1− r

)(k

r

)
f(rtpm−1)

≡





pmn
(k

n

)
(−t)nAn (mod pmn+1)

if p > 2 or m = 1,

2mn
(k

n

)
(−t)n

n∑

r=0

(n

r

)
Ar+n (mod 2mn+1)

if p = 2 and m ≥ 2.

From Theorem 2.3 we deduce:
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Theorem 2.4. Let p be a prime, k, m, t ∈ N.

Let f be a p-regular function. Then

(i) ([S2]) f(kpm−1) ≡ f(0) (mod pm).

(ii) f(ktpm−1) ≡ kf(tpm−1)−(k−1)f(0) (mod p2m).

(iii) We have

f(ktpm−1) ≡ k(k − 1)

2
f(2tpm−1)− k(k − 2)f(tpm−1)

+
(k − 1)(k − 2)

2
f(0) (mod p3m).

(iv) We have

f(kpm−1)

≡





f(0)− k(f(0)− f(1))pm−1 (mod pm+1)

if p > 2 or m = 1,

f(0)− 2m−2k(f(2)− 4f(1) + 3f(0))(mod 2m+1)

if p = 2 and m ≥ 2.
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Example:

Ekϕ(pm)+b ≡ (1− kpm−1)(1− (−1)
p−1
2 pb)Eb

+ kpm−1Ep−1+b (mod pm+1),

Ukϕ(pm)+b ≡
(
1− (

p

3
)pb

)
Ub (mod pm),

where ϕ is Euler’s totient function.

Lemma 2.3. For n = 0,1,2, . . . and any two
functions f and g we have

n∑

k=0

(n

k

)
(−1)kf(k)g(k)

=
n∑

s=0

(n

s

)



s∑

r=0

(s

r

)
(−1)rF (n− s + r)


 G(s),

where F (m) =
∑m

k=0

(
m
k

)
(−1)kf(k) and G(m) =

∑m
k=0

(
m
k

)
(−1)kg(k).

Proof. We first claim that
n∑

r=0

(n

r

)
(−1)rf(r+m) =

m∑

r=0

(m

r

)
(−1)rF (r+n).
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Clearly the assertion holds for m = 0. Now

assume that it is true for m = k. It is easily

seen that
n∑

r=0

(n

r

)
(−1)rf(r + k + 1)

=
n∑

s=0

(n

s

)
(−1)sf(k + s)−

n+1∑

s=0

(n + 1

s

)
(−1)sf(k + s)

=
k∑

s=0

(k

s

)
(−1)sF (n + s)−

k∑

s=0

(k

s

)
(−1)sF (n + 1 + s)

=
k+1∑

s=0

(k + 1

s

)
(−1)sF (n + s).

So the assertion is true by induction.

From the binomial inversion formula we know

that g(k) =
∑k

s=0

(
k
s

)
(−1)sG(s). Thus, by the

above assertion we have

14



n∑

k=0

(n

k

)
(−1)kf(k)g(k)

=
n∑

k=0

(n

k

)
(−1)kf(k)

k∑

s=0

(k

s

)
(−1)sG(s)

=
n∑

s=0




n∑

k=s

(n

k

)(k

s

)
(−1)k−sf(k)


 G(s)

=
n∑

s=0

(n

s

)



n∑

k=s

(n− s

k − s

)
(−1)k−sf(k)


 G(s)

=
n∑

s=0

(n

s

)



n−s∑

r=0

(n− s

r

)
(−1)rf(r + s)


 G(s)

=
n∑

s=0

(n

s

)



s∑

r=0

(s

r

)
(−1)rF (n− s + r)


 G(s),

which completes the proof.

Theorem 2.5 (Product Theorem). Let p be a

prime. If f and g are p-regular functions, then

f · g is also a p-regular function.

15



§ 3. p-regular functions involving Bernoulli

polynomials and generalized Bernoulli num-

bers

The Bernoulli polynomial Bn(x) is given by

Bn(x) =
n∑

k=0

(n

k

)
Bkxn−k.

For x ∈ Zp let 〈x〉p denote the unique number

n ∈ {0,1, . . . , p− 1} such that x ≡ n (mod p).

Theorem 3.1 Let p be a prime and let b be a

nonnegative integer.

(i) ([S2, 2000], [Young, 2001]) If p− 1 - b, x ∈
Zp and x′ = (x + 〈−x〉p)/p, then

f(k) =
Bk(p−1)+b(x)− pk(p−1)+b−1Bk(p−1)+b(x

′)
k(p− 1) + b

is a p−regular function.
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(ii) ([S2, (3.1), Theorem 3.1 and Remark 3.1])

If a, b ∈ N and p - a, then

f(k) = (1−pk(p−1)+b−1)(ak(p−1)+b−1)
Bk(p−1)+b

k(p− 1) + b

is a p-regular function.

Let χ be a primitive Dirichlet character of con-

ductor m. The generalized Bernoulli number

Bn,χ is defined by

m∑

r=1

χ(r)tert

emt − 1
=

∞∑

n=0

Bn,χ
tn

n!
.

Let χ0 be the trivial character. It is well known

that

B1,χ0
=

1

2
, Bn,χ0 = Bn (n 6= 1),

Bn,χ = mn−1
m∑

r=1

χ(r)Bn

(
r

m

)
.

If χ is nontrivial and n ∈ N, then clearly
∑m

r=1 χ(r)

= 0 and so
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Bn,χ

n
= mn−1

m∑

r=1

χ(r)
(Bn(

r
m)−Bn

n
+

Bn

n

)

= mn−1
m∑

r=1

χ(r)
Bn(

r
m)−Bn

n
.

When p is a prime with p - m, by [S1, Lemma

2.3] we have (Bn(
r
m)−Bn)/n ∈ Zp. Thus Bn,χ/n

is congruent to an algebraic integer modulo p.

Theorem 3.2. Let p be a prime and let b be

a nonnegative integer.

(i) ([Young, 1999], [Fox, 2002], [S2, 2000]) If

b, m ∈ N, p - m and χ is a nontrivial primitive

Dirichlet character of conductor m, then

f(k) = (1− χ(p)pk(p−1)+b−1)
Bk(p−1)+b,χ

k(p− 1) + b

is a p−regular function.
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(ii) ([S2, Lemma 8.1(b)]) If m ∈ N, p - m and χ

is a nontrivial Dirichlet character of conductor

m, then

f(k) = (1− χ(p)pk(p−1)+b−1)pBk(p−1)+b,χ

is a p−regular function.

Definition 3.1 For a 6= 0 define {E(a)
n } by

[n/2]∑

k=0

( n

2k

)
a2kE

(a)
n−2k = (1−a)n (n = 0,1,2, . . .).

Clearly E
(1)
n = En.

Theorem 3.3 ([S6]). Let a be a nonzero in-

teger and b ∈ {0,1,2, . . .}. Then f(k) = E
(a)
2k+b

is a 2−regular function.
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Theorem 3.4 ([S6]). Let p be an odd prime

and let b be a nonnegative integer. Then

f2(k) = (1−(−1)
p−1
2 b+[p−1

4 ]pk(p−1)+b)E(2)
k(p−1)+b

and

f3(k) = (1−(−1)[
p+1
6 ](

p

3
)b+1pk(p−1)+b)E(3)

k(p−1)+b

are p-regular functions.

§4. Congruences for
∑p−1

x=1
1
xk (mod p3) and

∑p−1
2

x=1
1
xk (mod p3)
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Theorem 4.1 ([S2]) Let p be a prime greater

than 3.

(a) If k ∈ {1,2, . . . , p− 4}, then
p−1∑

x=1

1

xk

≡





k(k + 1)

2

Bp−2−k

p− 2− k
p2 (mod p3)

if k is odd,

k

(
B2p−2−k

2p− 2− k
− 2

Bp−1−k

p− 1− k

)
p (mod p3)

if k is even.

(b)
p−1∑

x=1

1

xp−3
≡ (

1

2
− 3Bp+1)p−

4

3
p2 (mod p3).

(c)
p−1∑

x=1

1

xp−2
≡ −(2 + pBp−1)p +

5

2
p2 (mod p3).

(d)
p−1∑

x=1

1

xp−1

≡ pB2p−2 − 3pBp−1 + 3(p− 1) (mod p3).
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Proof. For m ∈ Z it is clear that

1m + 2m + · · ·+ (p− 1)m =
Bm+1(p)−Bm+1

m + 1

=
1

m + 1

m+1∑

r=1

(m + 1

r

)
Bm+1−rp

r

= pBm +
p2

2
mBm−1

+
m+1∑

r=3

( m

r − 1

)
pBm+1−r ·

pr−4

r
· p3.

Since pBm+1−r,
pr−4

r ∈ Zp for r ≥ 3 we have

(4.1)

1m+2m+· · ·+(p−1)m ≡ pBm+
p2

2
mBm−1 (mod p3).

Let k ∈ {1,2, . . . , p−1}. From (4.1) and Euler’s

theorem we see that
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p−1∑

x=1

1

xk
≡

p−1∑

x=1

xϕ(p3)−k

≡ pBϕ(p3)−k +
p2

2

(
ϕ(p3)− k

)
Bϕ(p3)−k−1

≡ pBϕ(p3)−k −
k

2
p2Bϕ(p3)−k−1

=





pBϕ(p3)−k (mod p3) if k is even,

−k

2
p2Bϕ(p3)−k−1 (mod p3) if k is odd.

For k ∈ {1,2, . . . , p− 2} we see that

Bϕ(p3)−k

ϕ(p3)− k
=

B(p2−1)(p−1)+p−1−k

(p2 − 1)(p− 1) + p− 1− k

≡ (p2 − 1)
B2p−2−k

2p− 2− k
− (p2 − 2)(1− pp−2−k)

Bp−1−k

p− 1− k

≡ − B2p−2−k

2p− 2− k
+ 2(1− pp−2−k)

Bp−1−k

p− 1− k
(mod p2).
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Thus,

(4.2)
pBϕ(p3)−k

≡ −kp

(
− B2p−2−k

2p− 2− k
+ 2(1− pp−2−k)

Bp−1−k

p− 1− k

)

≡





kp(
B2p−2−k

2p− 2− k
− 2

Bp−1−k

p− 1− k
) (mod p3)

if k < p− 3,

(p− 3)p(
Bp+1

p + 1
− 2(1− p)

B2

2
) (mod p3)

if k = p− 3.

When k ∈ {1,2, . . . , p−3} , it follows from Kum-

mer’s congruences that

Bϕ(p3)−k−1

ϕ(p3)− k − 1
=

B(p2−1)(p−1)+p−2−k

(p2 − 1)(p− 1) + p− 2− k

≡ Bp−2−k

p− 2− k
(mod p).

Thus,

(4.3)

−k

2
p2Bϕ(p3)−k−1 ≡ −k

2
p2(−k−1)

Bp−2−k

p− 2− k
(mod p3).
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Combining the above we get

p−1∑

x=1

1

xk
≡





kp

(
B2p−2−k

2p− 2− k
− 2

Bp−1−k

p− 1− k

)
(mod p3)

if k ∈ {2,4, . . . , p− 5},
(
1

2
− 3Bp+1)p−

4

3
p2 (mod p3)

if k = p− 3,
k(k + 1)

2

Bp−2−k

p− 2− k
p2 (mod p3)

if k ∈ {1,3, . . . , p− 4}.
This proves parts (a) and (b).

Now consider parts (c) and (d). Note that
pBr(p−1) ≡ −1 (mod p) for r ≥ 1. From the
above and [S1, Corollary 4.2] we see that

p−1∑

x=1

1

xp−2
≡ −p− 2

2
p2Bϕ(p3)−(p−1)

≡ −p− 2

2
p((p2 − 1)pBp−1 − (p2 − 2)(p− 1))

≡ p− 2

2
p(pBp−1 + 2− 2p)

≡ −p(pBp−1 + 2) +
5

2
p2 (mod p3)
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and

p−1∑

x=1

1

xp−1

≡ pBϕ(p3)−(p−1)

≡
(p2 − 1

2

)
pB2p−2 − (p2 − 1)(p2 − 3)pBp−1

+
(p2 − 2

2

)
(p− 1)

≡ (1− 3p2

2
)pB2p−2 − (3− 4p2)pBp−1

+ (3− 5p2

2
)(p− 1)

≡ pB2p−2 − 3pBp−1 + 3(p− 1) (mod p3).

This concludes the proof.

One can similarly prove that
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Theorem 4.2 Let p > 5 be a prime and k ∈
{1,2, . . . , p− 5}. Then

p−1∑

x=1

1

xk

≡





−k

(
B3p−3−k

3p− 3− k
− 3

B2p−2−k

2p− 2− k
+ 3

Bp−1−k

p− 1− k

)
p

−
(k + 2

3

)p3Bp−3−k

p− 3− k
(mod p4) if 2|k,

−
(k + 1

2

)
(

B2p−3−k

2p− 3− k
− 2

Bp−2−k

p− 2− k
)p2 (mod p4)

if 2 - k.
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Theorem 4.3 ([S2]). Let p > 5 be a prime.

(a) If k ∈ {2,4, . . . , p− 5}, then

p−1
2∑

x=1

1

xk

≡ k(2k+1 − 1)

2
p(

B2p−2−k

2p− 2− k
− 2

Bp−1−k

p− 1− k
) (mod p3).

(b) If k ∈ {3,5, · · · , p− 4}, then

p−1
2∑

x=1

1

xk
≡ (2k−2)(2

Bp−k

p− k
− B2p−1−k

2p− 1− k
) (mod p2).

(c) If qp(2) = (2p−1 − 1)/p, then

p−1
2∑

x=1

1

x

≡ −2qp(2) + pq2p(2)− 2

3
p2q3p(2)− 7

12
p2Bp−3 (mod p3).
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Theorem 4.4 ([S4]). Let p > 3 be a prime

and qp(a) = (ap−1 − 1)/p. Then

p−1∑

k=1
k≡p (mod 3)

1

k

≡ 1

2
qp(3)− 1

4
pqp(3)2 +

1

6
p2qp(3)3 − p2

81
Bp−3(mod p3),

p−1∑

k=1
k≡p (mod 4)

1

k

≡ 3

4
qp(2)− 3

8
pqp(2)2 +

1

4
p2qp(2)3

− p2

192
Bp−3 (mod p3),

p−1∑

k=1
k≡p (mod 6)

1

k

≡ 1

3
qp(2) +

1

4
qp(3)− p

(
1

6
qp(2)2 +

1

8
qp(3)2

)

+ p2
(
1

9
qp(2)3 +

1

12
qp(3)3 − 1

648
Bp−3

)
(mod p3).
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§5. A congruence for (p− 1)! (mod p3)

Let p be a prime greater than 3. The classical

Wilson’s theorem states that

(p− 1)! ≡ −1 (mod p).

In 1900 J.W.L.Glaisher showed that

(p− 1)! ≡ pBp−1 − p (mod p2).

Here we give a congruence for (p−1)! modulo

p3.

Theorem 5.1 ([S2]). For any prime p > 3 we

have

(p−1)! ≡ pB2p−2

2p− 2
−pBp−1

p− 1
−1

2

(
pBp−1

p− 1

)2

(mod p3).

The proof is based on the following Newton’s

formula.
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Newton’s formula: Suppose that x1, x2, . . . , xn

are complex numbers. If

Sm = xm
1 + xm

2 + · · ·+ xm
n ,

Am =
∑

1≤i1<i2<···<im≤n

xi1xi2 · · ·xim,

for k = 0,1, . . . , n we have

Sk −A1Sk−1 + A2Sk−2 + · · ·
+ (−1)k−1Ak−1S1 + (−1)kkAk = 0.

§6. Congruences involving Bernoulli and
Euler polynomials

The Euler polynomials {En(x)} are given by

En(x) +
n∑

r=0

(n

r

)
Er(x) = 2xn (n ≥ 0).

It is known that

En(x) =
1

2n

n∑

r=0

(n

r

)
(2x− 1)n−rEr

=
2

n + 1

(
Bn+1(x)− 2n+1Bn+1

(
x

2

))
.
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Also,

p−1∑

x=0

xk =
Bk+1(p)−Bk+1

k + 1
,

p−1∑

x=0

(−1)xxk = −(−1)pEk(p)− Ek(0)

2
.

Theorem 6.1 ([S3]). Let p, m ∈ N and k, r ∈
Z with k ≥ 0. Then

p−1∑

x=0
x≡r(mod m)

xk

=
mk

k + 1

(
Bk+1

(
p

m
+

{
r − p

m

})
−Bk+1

({
r

m

}))
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and

p−1∑

x=0
x≡r(mod m)

(−1)
x−r
m xk

= −mk

2

(
(−1)[

r−p
m ]Ek

(
p

m
+

{
r − p

m

})

− (−1)[
r
m]Ek

({
r

m

}))
.

Proof. For any real number t and nonnegative

integer n it is well known that

Bn(t + 1)−Bn(t) = ntn−1 (n 6= 0),

En(t + 1) + En(t) = 2tn.

Hence, for x ∈ Z we have

Bk+1

(
x + 1

m
+

{
r − x− 1

m

})
−Bk+1

(
x

m
+

{
r − x

m

})

=

{
0 if m - x− r,

(k + 1)(
x

m
)k if m | x− r.
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Thus

Bk+1

(
p

m
+

{
r − p

m

})
−Bk+1

({
r

m

})

=
p−1∑

x=0

(
Bk+1

(
x + 1

m
+

{
r − x− 1

m

})

−Bk+1

(
x

m
+

{
r − x

m

}))

=
k + 1

mk

p−1∑

x=0
x≡r(mod m)

xk.

Similarly, if x ∈ Z, then

(−1)[
r−x−1

m ]Ek

(
x + 1

m
+

{
r − x− 1

m

})

− (−1)[
r−x
m ]Ek

(
x

m
+

{
r − x

m

})

=

{
0 if m - x− r,

−(−1)
r−x
m · 2(

x

m
)k if m | x− r.
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Thus

(−1)[
r−p
m ]Ek

(
p

m
+

{
r − p

m

})

− (−1)[
r
m]Ek

({
r

m

})

=
p−1∑

x=0

{
(−1)[

r−x−1
m ]Ek

(
x + 1

m
+

{
r − x− 1

m

})

− (−1)[
r−x
m ]Ek

(
x

m
+

{
r − x

m

})}

= − 2

mk

p−1∑

x=0
x≡r(mod m)

(−1)
x−r
m xk.

This completes the proof.

Corollary 6.1 Let p be an odd prime and k ∈
{0,1, . . . , p − 2}. Let r ∈ Z and m ∈ N with
p - m. Then

p−1∑

x=0
x≡r(mod m)

xk

≡ mk

k + 1

(
Bk+1

({
r − p

m

})
−Bk+1

({
r

m

}))
(mod p)
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and

p−1∑

x=0
x≡r(mod m)

(−1)
x−r
m xk

≡ −mk

2

(
(−1)[

r−p
m ]Ek

({
r − p

m

})

− (−1)[
r
m]Ek

({
r

m

}))
(mod p).

Proof. If x1, x2 ∈ Zp and x1 ≡ x2 (mod p), then
Bk+1(x1)−Bk+1(x2)

k+1 ≡ 0 (mod p) and Ek(x1) ≡
Ek(x2) (mod p). Thus the result follows from

Theorem 6.1.

In the case k = p − 2, Corollary 6.1 is due to

Zhi-Wei Sun. Inspired by Zhi-Wei Sun’s work,

I established Theorem 6.1 and Corollary 6.1.
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Corollary 6.2 Let p be an odd prime. Let k ∈
{0,1, . . . , p− 2} and m, s ∈ N with p - m. Then

(−1)k

k + 1

(
Bk+1

({
(s− 1)p

m

})
−Bk+1

({
sp

m

}))

≡
∑

(s−1)p
m <r≤sp

m

rk (mod p)

and

(−1)[
(s−1)p

m ]Ek

({
(s− 1)p

m

})
− (−1)[

sp
m ]Ek

({
sp

m

})

≡ 2(−1)k−1 ∑

(s−1)p
m <r≤sp

m

(−1)rrk (mod p).
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Theorem 6.2. Let m, s ∈ N and let p be an

odd prime not dividing m. Then

(−1)sm

p

p−1∑

k=1
k≡sp(mod m)

(p

k

)
≡

∑

(s−1)p
m <k<sp

m

(−1)km

k

≡





Bp−1({
(s− 1)p

m
})−Bp−1({

sp

m
})(mod p)if 2 | m,

1

2
((−1)[

(s−1)p
m ]Ep−2({

(s− 1)p

m
})

−(−1)[
sp
m ]Ep−2({

sp

m
})) (mod p) if 2 - m.

Corollary 6.3. Let m, n ∈ N and let p be an

odd prime not dividing m.

(i) If 2 | m, then

Bp−1

({
np

m

})
−Bp−1

≡ m

p

n∑

s=1

(−1)s−1
p−1∑

k=1
k≡sp(mod m)

(p

k

)
(mod p).
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(ii) If 2 - m, then

(−1)[
np
m ]Ep−2

({
np

m

})
+

2p − 2

p

≡ 2m

p

n∑

s=1

(−1)s−1
p−1∑

k=1
k≡sp(mod m)

(p

k

)
(mod p).

In the cases m = 3,4,5,6,8,9 the formulae for
p∑

k=0
k≡r (mod m)

(
p
k

)
were given by me (published

in 1992-1993), in the case m = 10 the for-

mula was published by Z.H.Sun and Z.W.Sun

in 1992, and for the case m = 12, the formula

was given by Zhi-Wei Sun (published in 2002).
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§7. Extension of Stern’s congruence for

Euler numbers

For k, m ∈ N and b ∈ {0,2,4, . . .}. The Stern’s

congruence states that

(7.1) E2mk+b ≡ Eb + 2mk (mod 2m+1).

In 1875 Stern gave a brief sketch of a proof

of (7.1). Then Frobenius amplified Stern’s

sketch in 1910.

There are many modern proofs of (7.1). (Ern-

vall(1979), Wagstaff(2002), Zhi-Wei Sun(2005),

Zhi-Hong Sun(2008))

Let b ∈ {0,2,4, . . .} and k, m ∈ N. In [S5, 2010]

I showed that

E2mk+b ≡ Eb + 2mk (mod 2m+2) for m ≥ 2,

E2mk+b ≡ Eb + 5 · 2mk (mod 2m+3) for m ≥ 3,
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and for m ≥ 4,

E2mk+b

≡
{

Eb + 5 · 2mk (mod 2m+4) if b ≡ 0,6 (mod 8),

Eb − 3 · 2mk (mod 2m+4) if b ≡ 2,4 (mod 8).
.

In [S9], Z.H.Sun and L.L.Wang (IJNT, 2013)

established a congruence for E2mk+b (mod 2m+7).

In particular, for m ≥ 7,

E2mk+b ≡ Eb+2mk(7(b+1)2−18) (mod 2m+7).

For a 6= 0 recall that {E(a)
n } is defined by

[n/2]∑

k=0

( n

2k

)
a2kE

(a)
n−2k = (1−a)n (n = 0,1,2, . . .).

From [S6] we know that

E
(a)
n = (2a)nEn

(
1

2a

)
=

[n/2]∑

k=0

( n

2k

)
(1− a)n−2ka2kE2k

=
n∑

k=0

(n

k

)
2k+1

(
1− 2k+1

)Bk+1

k + 1
ak.
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Theorem 7.1([S6, 2012]). Let a be a nonzero

integer, k, m ∈ N, m ≥ 2 and b ∈ {0,1,2, . . .}.
Then

E
(a)
2mk+b − E

(a)
b

≡





2mk(a3((b− 1)2 + 5)− a + 2mka3(b− 1))

(mod 2m+4+3α) if 2α | a and α ≥ 1,

2mka((b + 1)2 + 4− 2mk(b + 1)) (mod 2m+4)

if 2 - a and 2 | b,
2mk(a2 − 1) (mod 2m+4) if 2 - ab.

As E
(1)
n = En, the theorem is a vast general-

ization of Stern’s congruence.
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§8. (−1)nU2n and (−1)nE
(a)
2n are realizable

If {an}∞n=1 and {bn}∞n=1 are two sequences sat-

isfying

a1 = b1, bn+a1bn−1+· · ·+an−1b1 = nan (n > 1),

we say that (an, bn) is a Newton-Euler pair. If

(an, bn) is a Newton-Euler pair and an ∈ Z for

all n = 1,2,3, . . ., we say that {bn} is a Newton-

Euler sequence.

Let {bn} be a Newton-Euler sequence. Then

clearly bn ∈ Z for all n = 1,2,3, . . ..

Z.H. Sun, On the properties of Newton-Euler

pairs, J. Number Theory 114(2005), 88-123.

Lemma 8.1. Let {bn}∞n=1 be a sequence of

integers. Then the following statements are

equivalent:
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(i) {bn} is a Newton-Euler sequence.

(ii)
∑

d|n µ(n
d)bd ≡ 0 (mod n) for every n ∈ N.

(iii) For any prime p and α, m ∈ N with p - m

we have bmpα ≡ bmpα−1 (mod pα).

(iv) For any n, t ∈ N and prime p with pt ‖ n

we have bn ≡ bn
p

(mod pt).

(v) There exists a sequence {cn} of integers

such that bn =
∑

d|n dcd for any n ∈ N.

(vi) For any n ∈ N we have

∑

k1+2k2+···+nkn=n

b
k1
1 b

k2
2 · · · bkn

n

1k1 · k1! · 2k2 · k2! · · ·nkn · kn!
∈ Z.
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(vii) For any n ∈ N we have

1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 b2 b3 . . . bn

−1 b1 b2 . . . bn−1

−2 b1 . . . bn−2
. . . . . . ...

−(n− 1) b1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Z.

Let {bn}∞n=1 be a sequence of nonnegative inte-

gers. If there is a set X and a map T : X → X

such that bn is the number of fixed points of

Tn, following Puri and Ward we say that {bn}
is realizable.

Puri and Ward (2001) proved that a sequence

{bn} of nonnegative integers is realizable if and

only if for any n ∈ N, 1
n

∑
d|n µ(n

d)bd is a nonneg-

ative integer. Thus, using Möbius inversion

formula we see that a sequence {bn} is realiz-

able if and only if there exists a sequence {cn}
of nonnegative integers such that bn =

∑
d|n dcd

for any n ∈ N.
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J. Arias de Reyna (Acta Arith. 119(2005),

39-52) showed that {E2n} is a Newton-Euler

sequence and {|E2n|} is realizable.

In [S6, S7] I proved the following results.

Theorem 8.1 ([S7, 2012]). {U2n} is a Newton-

Euler sequence and {(−1)nU2n} is realizable.

Theorem 8.2 ([S6, 2012]). Let a ∈ N. Then

{(−1)nE
(a)
2n } is realizable.

§9. Congruences involving {Un}

In [S7], Z.H. Sun introduced the sequence {Un}
as below:

U0 = 1, Un = −2
[n/2]∑

k=1

( n

2k

)
Un−2k (n ≥ 1).

Since U1 = 0. By induction, U2n−1 = 0 for

n ≥ 1.
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The first few values of U2n are shown below:

U2 = −2, U4 = 22, U6 = −602, U8 = 30742,

U10 = −2523002, U12 = 303692662.

Theorem 9.1 For n ∈ N we have

U2n = 32nE2n

(
1

3

)
= −2

(
22n+1 + 1

)
32nB2n+1(

1
3)

2n + 1

= −2(22n+1 + 1)62n

22n + 1
· B2n+1(

1
6)

2n + 1
.

For d ∈ Z with d < 0 and d ≡ 0,1 (mod 4)
let h(d) denote the class number of the form
class group consisting of classes of primitive,
integral binary quadratic forms of discriminant
d.

Theorem 9.2 ([S7]). Let p be a prime of the
form 4k + 1. Then

Up−1
2
≡

(
1 + 2(−1)

p−1
4

)
h(−3p) (mod p)

and so p - Up−1
2

.
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Recall that the Fermat quotient qp(a) = (ap−1−
1)/p.

Theorem 9.3 ([S7]). Let p be a prime greater

than 5. Then

(i)
[p/6]∑
k=1

1
k ≡ −2qp(2)−3

2qp(3)+p
(
qp(2)2+3

4qp(3)2
)
−

5p
2 (p

3)Up−3 (mod p2),

(ii)
[p/3]∑
k=1

1
k ≡ −3

2qp(3)+3
4pqp(3)2−p(p

3)Up−3 (mod p2),

(iii)
[2p/3]∑
k=1

(−1)k−1

k ≡ 9
p−1∑
k=1
3|k+p

1
k ≡ 3p(p

3)Up−3 (mod p2).
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(iv) We have

(−1)[
p
6]

(p− 1

[p6]

)

≡ 1 + p

(
2qp(2) +

3

2
qp(3)

)
+ p2

(
qp(2)2 + 3qp(2)qp(3)

+
3

8
qp(3)2 − 5

(
p

3

)
Up−3

)
(mod p3)

and

(−1)[
p
3]

(p− 1

[p3]

)

≡ 1 +
3

2
pqp(3) +

3

8
p2qp(3)2 − p2

2

(
p

3

)
Up−3 (mod p3).

Theorem 9.4. Let p > 3 be a prime and

k ∈ {2,4, . . . , p− 3}. Then

[p/6]∑

x=1

1

xk
≡ 6k

p−1∑

x=1
6|x−p

1

xk
≡ 6k(2k + 1)

4(2k−1 + 1)

(
p

3

)
Up−1−k (mod p)
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and

[p/3]∑

x=1

1

xk
≡ 3k

p−1∑

x=1
3|x−p

1

xk
≡ 6k

4(2k−1 + 1)

(
p

3

)
Up−1−k (mod p).

Theorem 9.5. Let p > 3 be a prime and

k ∈ {2,4, . . . , p− 3}. Then

[p/3]∑

x=1

(−1)x−1 1

xk
≡ −3k

2

(
p

3

)
Up−1−k (mod p)

and

[p+3
6 ]∑

x=1

1

(2x− 1)k
≡ − 3k

2k+1 + 4

(
p

3

)
Up−1−k (mod p).
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By [S7],

(9.1)

Bp−2

(
1

3

)
≡ 6Up−3 (mod p) for any prime p > 3.

S. Mattarei and R. Tauraso (Congruences for

central binomial sums and finite polylogarithms,

J. Number Theory 133(2013), 131-157) proved

that for any prime p > 3,

p−1∑

k=0

(2k

k

)
≡

(
p

3

)
− p2

3
Bp−2

(
1

3

)
(mod p3).

Thus,

(9.2)
p−1∑

k=0

(2k

k

)
≡

(
p

3

)
− 2p2Up−3 (mod p3)

for any prime p > 3. The congruence

p−1∑

k=0

(2k

k

)
≡

(
p

3

)
(mod p2)

was found and proved by Z.W. Sun and R.

Tauraso (Adv. in Appl. Math. 45(2010),125-

148).
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Suppose that p is a prime of the form 3k+1 and

so 4p = L2+27M2 for some integers L and M .

Assume L ≡ 1 (mod 3). From (9.1) and the

work of J. B. Cosgrave and K. Dilcher (Mod p3

analogues of theorems of Gauss and Jacobi on

binomial coefficients, Acta Arith. 142(2010),

103-118) we have

(9.3)
(2(p−1)

3
p−1
3

)
≡

(
− L +

p

L
+

p2

L3

)
(1 + p2Up−3)

≡ −L +
p

L
+ p2

(
1

L3
− LUp−3

)
(mod p3).
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