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1. Introduction. Let Z be the set of integers, w = (—1 + 1/—3)/2 and
Zw)={a+bw|a,beZ}. Form =a+bw € Z[w] the norm of 7 is given by
N7 =77 =a? —ab+ b*>. When 7 = 2 (mod 3) we say that 7 is primary.

If 7 € Z[w], N7 > 1 and 7 = +2 (mod 3) we may write 7 = +m ... 7,
where 71, ..., T, are primary primes. For a € Z[w] the cubic Jacobi symbol

3 1 3 o 3’

is the cubic residue character of a modulo 7y which is given by

a [0 ifm]a,
m ), W if aNTeTD8 =0t (mod ).

According to [IR, pp. 135, 313] the cubic Jacobi symbol has the following
properties:

(1.1) If a,b € Z and a + bw = 2 (mod 3) then (5-), = w(*TtHI/3,

where (7%)3

a+bw
(1.2) If a,b € Z and a + bw = 2 (mod 3) then (1=2), = w2(e+1)/3,
— A s
(1.3) If 7, A € Z[w] and 7, A = £2 (mod 3) then (2), = (),

The assertion (1.3) is now called the general cubic reciprocity law; it was
first proved by G. Eisenstein.

Let p be a prime of the form 3n+1. It is well known that there are unique
integers L and | M| such that 4p = L2 +27M? with L = 1 (mod 3). Tt follows
that (ﬁ)2 = —3 (modp) and therefore mP~Y/3 =1, (—1- £)/2 or
(=14 3%)/2 (modp) for any integer m # 0 (mod p).

In 1827 Jacobi [J] established the following rational cubic reciprocity
law.
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THEOREM 1.1 (Jacobi). Let q be a prime of the form 3n+ 1, q¢ # p
and 4q = L'* +27TM'"?. Then q is a cubic residue modulo p if and only if
(LM’ — L'M)/(LM'" + L' M) is a cubic residue modulo q.

In 1958, using the period equation of degree 3, E. Lehmer [L1] gave the
following criterion for cubic residuacity.

THEOREM 1.2 (E. Lehmer). If q is an odd prime different from p then
q is a cubic residue of p if and only if either LM =0 (modq) or L = uM
(mod q), where p satisfies the congruence

5 Su+1 9
3u—3\2u—+1

2
I ) (mod q)

with u # 0,1,—%,—1 (modgq) and (W) = 1. Here (5) is the
Legendre symbol.

In 1975 K. S. Williams [W1] showed how to choose the sign of M so that
m®~D/3 = (—1- &) /2 (mod p) when m is a cubic nonresidue modulo p.

Let £4 be the fundamental unit in the quadratic field Q(+v/d). In 1970’s
E. Lehmer [L3], [L4] began to study criteria for ¢4 to be a cubic residue
modulo p, where p is a prime of the form 3n + 1 satisfying (%) =1.

Since the work of Euler, Gauss, Jacobi and Eisenstein (see [IR, p. 133])
it is known that cubic congruences are connected with binary quadratic
forms. In 1992 B. K. Spearman and K. S. Williams [SW] showed that m is
a cubic residue modulo p if and only if p can be represented by one of the
third (composition) powers of primitive integral binary quadratic forms of
discriminant —27m?, where p is a prime greater than 3 for which m # 0
(mod p).

Let m be a positive integer, and Z,, the set of those rational numbers
whose denominator is prime to m. Inspired by the above work of Jacobi,
Lehmer and Williams we introduce the subsets Cy(m), C1(m) and Ca(m) of
Ly, for m # 0 (mod 3), where

Ci(m):{kulmnjm") =, keZm} for i =0,1,2.
3

In Sections 2 and 3 we concentrate on the structure and properties of
Co(m),C1(m) and Cy(m). Here are some typical results:

(1.4) Let p be a prime of the form 3n + 1 and hence 4p = L% + 27M?>
for some L,M € Z and L = 1 (mod3). If ¢ is a prime such that M # 0
(modg) and i € {0,1,2} then ¢*~V/% = ((=1 - 3%)/2)" (modp) if and
only if L/(3M) € C;(q).
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(1.5) Let p be a prime for which p = 1 (mod 3), t> = —3 (mod p) (¢t € Z),
k € Zy, k* +3# 0 (modp) and i € {0,1,2}. Then k € C;(p) if and only if

(p—1)/3 i
k—t -1-—-t
<k+t> = ( 5 ) (mod p).

(1.6) Let p be a prime greater than 3, k € Z, and k* + 3 # 0 (modp).
Then k € Cy(p) if and only if

59
k= % (modp)  for some integer x.
If ¢ is also a prime of the form 3n+1 and 4¢ = L'?> +27M"? (L', M’ € Z)

with L' =1 (mod 3), in view of (1.4) and (1.5) we see that

P13 = <—1—L/(3M)> (mod p)

2
if and only if

LM — L'M (¢—1)/3 —l—L//(3M/) i
<LM’ - L’M> - ( 2 > (
This generalizes Jacobi’s result.
Combining (1.4) with (1.6) gives a simple criterion for cubic residuacity
which improves Lehmer’s result.
Section 4 is devoted to cubic congruences. Here are two main results:

(1.7) If p > 3 is a prime, a,b € Z,, ptab and s*> = —3(b* — 4a) (mod p)
for some s € Z, then the congruence 23 — 3az — ab = 0 (mod p) is solvable
if and only if s/b € Cy(p).

(1.8) Suppose that p is a prime greater than 3 and that N is the number
of values of 23+ Ax? + Bz + C modulo p, where A, B, C' € Z and x runs over
all integers. If A2 # 3B (modp) then N = p — (p — (_73))/3 If A2=3B
(modp) then N = (p+2)/3 or p according as p = 1 (mod3) or p = 2
(mod 3).

In Section 5 the criteria for s(d) € C;(p) (i = 0,1,2) are given in terms
of binary quadratic forms, where p > 3 is a prime, d € Z, p{(d + 3) and
(s(d))? = d (mod p). In particular, sufficient and necessary conditions for
s(d) € Cy(p) are described in the cases d = —1, -2, -5, —6, —7 and —15. As
a consequence we obtain criteria for eg, €15, €21 to be cubic residues modulo p.

In Section 6 we mainly determine Ulp—(=2))/3 (a,b) modulo p, where p > 3

mod q).

is a prime and {u,(a,b)} is the Lucas sequence given by wug(a,b) = 0,
ui(a,b) = 1 and up41(a,b) = buy(a,b) — au,—1(a,b) (n > 1). In partic-
ular, we obtain F(pi(%s))/?) (mod p) and P(pi(—?:s))/?) (modp), where {F,}

and {P,} denote the Fibonacci sequence and Pell sequence respectively.
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To illustrate the connections in the above work I state the following
result:

(1.9) Let p be a prime for which (*73) = (%) = 1, and ¢ a prime of
the form 3n + 1 satisfying L? + 135M2 = 0 (mod p), where L and M are
determined by 4q = L? +27M? (L, M € Z). Then the following statements

are equivalent:

(a) p is a cubic residue modulo gq.

(b) s(=15) € Co(p).

(c)es (=(1+ \f)/2) is a cubic residue modulo p.

(d) The congruence z° + 3z + 1 = 0 (mod p) is solvable.

(e) p| F (p-1)/3-

(f) p = 2% + 135y for some integers z and y.

For later convenience we list the following notations:

w = (=14 +/=3)/2, Z—the set of integers, ZT—the set of natural num-
bers, Zw]—the set {a + bw | a,b € Z}, N7—the norm of m, Q—the set
of rational numbers, Z,,—the set of those rational numbers whose denom-
inator is prime to m, [x]—the greatest integer not exceeding z, [z],—the
set {k | k = = (modp),k € Z,}, (a,b)—the greatest common divisor of a
and b, [a,b]—the least common multiple of a and b, m|n—m divides n,
m4{n—m does not divide n, (%)—the Legendre symbol, (%)S—the cubic
Jacobi symbol.

2. Basic properties of C;(m). Let m € Z* and m # 0 (mod 3). For
a,b € Z,, it is clear that there are unique integers ag, by € {0,1,...,m — 1}
satisfying a = a¢ (modm) and b = by (modm). From this we may define

(a,m) = (ag,m) and <a+ bw) = <a0+bow> for m > 1.
3 3

m m
When m = 1 define

(a,m)=1 and <a—i—bw> =1.
3

m
One can easily verify the following facts:
(2.1) If a,b,¢,d € Zy, then

(a;bw)g(o;dw)g _ <(a+bw)

(2.2) If n € Zy, and (m,n) =1 then ()
(2.3) If a,b € Zyy,m, then

(a—i—bw) _<a+bw> (a—i—bw)
mimso 3 mi 3 mo 3‘

—

c+dw)> .

3

=3

3
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DEFINITION 2.1. Suppose m € Z* and m # 0 (mod 3). For i = 0,1,2

define
E+1+2 )
Ci(m):{k: <++°") — o, keZm}.
m 3

From the above definition it is easy to prove the following results:
(2.4) Co(m)UC(m)UCo(m) ={k | (K> +3,m) =1, k € Zn,}
(2.5) k € Cy(m) if and only if —k € Cy(m).

(2.6) k € Ci(m) if and only if —k € Ca(m).

EXAMPLE 2.1. Set Cf(m) = C;(m)N{k | —m/2 <k <m/2, k € Z} for
1=20,1,2. Then

C5(5) = {0}, C1(5) = {1,2};

Co(7) = {0}, C1(7) ={-1,3};
Cr(11) = {0,5, -5}, Ci(11) = {—1,-2,3,—4};
6(13) = {0,4, -4}, C7(13) = {1,-2,-3, -5}
Cr(17) ={0,1,-1,3,-3}, Cr(17) = {2,4,-5,-6,7, —8};

Cy(19) ={0,1,-1,3,-3}, C7(19) ={-2,5,—6,7,—8,—9}.

PROPOSITION 2.1. Suppose m € Z and m # 0 (mod3). Then 0 €
Cg(m)

Proof. Since

(1;%)3: (11;1%):: (W)BZ (2)3:1

we see that 0 € Cy(m).

LEMMA 2.1. Suppose that m € Zt,m # 0 (mod3), ki,ky € Zp,
(k% + 3)(k2 + 3),m) = 1, and m’ is the greatest divisor of m for which
(m/,ky + ko) =1. Then

B4 1+20\ (ka+1+20\ (SR 142w
m 3 m 3_ m/ 3.

Proof. Since (k1 +1+2w)(ka + 1+ 2w) = kika — 3+ (k1 + k2)(1 4 2w)
it is seen that

k1+1+2w k2+1+2w
m 3 m 3

kiko — 3 + (kl + kg)(l + 2w)>
3

m

(k,;fjkg +1+ 2w> <k1k2 — 3+ (k1 + k2)(1 + 2@)
3 3

m’ m/m’
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When m = m/, we have

(k:lkz =34 (k1 4+ k2)(1 + 2w)> 1
3

m/m/

Now assume that m > m’ and that p is a prime divisor of m/m/. It is clear
that k1 + k2 = 0 (mod p) and therefore that

<k:1k:23+(k‘1+k:2)(1+2w)> B <k1k323> B <k‘%3> _1
p 3 p 3 p 3 .

Thus,

<k1k2 —3+ (Tl::;/;;kg)(l + 2w>>3

- ]431]{32 - 3+ (kl +k52)(1 —G—Qw) o
a H < p >3_1'

plm/m’
This completes the proof.

PROPOSITION 2.2. Let m be a positive integer not divisible by 3, and
i€{0,1,2}.

(i) If k, k' € Zy, and kk' = —3 (modm) then k € C;(m) if and only if
kK e C'l(m)

(ii) If ki,ks € C’Z(m) and (lﬁ + k‘z,m) =1 then (3 — klkz)/(lﬁ + ]{32) S
Ci(m).

Proof. Since (k,m) = 1, by Proposition 2.1 we have

F+l+2w\ (k) (F+1+2w\  (—3+k+2kw
m 5 \m)/y m . m 3

(142w E+1+4+2w)  (k+142w
a m 3 m 3 a m 3
So (i) follows.

To prove (ii), we note that

3—kik kiko—3
(,ﬁ_,'_lk;‘i‘l-i-Q(,u) _<k11+2k2_1_2w>
3 3

m m

k1ks—3 k1ka—3
BB vy BB 14
m 3 m 3

. k:1—|—1—|—2w k2—|—1+2w
a m 3 m 3

(by Lemma 2.1)
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PROPOSITION 2.3. Let m € ZT with m # 0 (mod3), and k € Z,, with
((k* — 1)(k* + 3),m) = 1.Then (k® — 9k)/(3k* — 3) € Co(m).

Proof. Clearly,
(k4+142w)* = (k+1+2w)(k* =3+ 2k(1+2w)) = k* —9k+ (3k* —3) (1+2w).
Thus,

(’;igi”;+1+2w> _ <k3—9k:+(3k:2—3)(1+2w)>
3 3

m m

_ <(k+1+2w)3>3 1

m
The proof is now complete.

PROPOSITION 2.4. Let my,mo € ZT be such that mims # 0 (mod 3),
k€Z and i € {0,1,2}. If m1 = ma (mod [9,k? + 3]) then k € C;(mq) if
and only if k € C;j(ma).

Proof. Write k+ 1+ 2w = (=1)/w®(1 — w)imy ... 7m,., where 7q,..., 7,
are primary primes in Z[w]. Since (k + 1+ 2w)(k + 1 + 2w?) = k? + 3 it
is seen that k? +3 = 0 (mod ;) (i = 1,...,r). Using Proposition 2.1 and
(1.1) we find

() () e ()= (),

NG LG,
G, 1)~ G, ),

B <k:—|—1+2w>
mo 3'

This proves the result.

Now we point out the connections between C;(m) (i € {0,1,2}) and
cubic residues.

THEOREM 2.1. Let p=1 (mod 3) be a prime, 4p = L>+27M? (L, M €
7) with L =1 (mod 3), and m = 2*3°m/m/” € Z* with m' = max{d | d|m
(d,6M) =1} and (6,m”) =1. Then, fori=0,1,2,

(p-1)/3 — (‘1_L2/(3M)> (mod p)
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if and only if L/(3M) € Cy(m'), where i’ € {0,1,2} is determined by

i+ 0M (mod3) if3|a or2|M,
i"'=<¢ i+ BM+ (—=1)""¢ (mod 3)
if a = (—1)" (mod3) and L = (—1)*"'M (mod4).

Proof. Set m = (L+3M)/2 + 3Mw. Then 7 € Zlw]. Clearly 7 = 2
(mod 3) and N7w = p. Thus,

(p=-1)/3 — (_1_2/(3M>> (mod p)

o mE-D/3 = <—1—Ié/(3M)> = & (mod )

o 2%m/m” w(l—w) 20 m ;
= _— = W
T 3 T 3 /)3
o T _ 2%m’m”’ _ im2BM _ i+BM
2¢m/'m” ) 4 ™ 3

(by (1.1), (1.2) and (1.3)).

Now let us calculate (%)3 Obviously (ﬁ)?) =1 for m"” = 1. Assume

that m” > 1 and that ¢ is a prime divisor of m”. It is clear that ¢ | M and
so that ¢f L. Thus,

(n:/)g: H ((L+3M)(J/2+3Mw>3: H (L/2>3:1'

qlm”’ alm” 1

On the other hand,

(LR

<(L+3M)/2+3Mw> B <?)A§U>3_<g>3_w

2 if 24 M and L = M (mod4),

L if 2t M and L = —M (mod4).

o 1 if3|aor2|M,
3 if 3] (a—(=1)") and 4 | (L — (—1)*"1M).
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Putting the above together we see that

i -1
me-03 = (TLZLIGMN T gy o (T —iem (T} i
2 m ), 20 ),

This concludes the proof.

COROLLARY 2.1. Let p and q be distinct primes greater than 3, p = 1
(mod 3) and 4p = L? + 27TM? (L,M € Z) with L = 1 (mod3). If q| M
then ¢P=1/3 =1 (mod p). If ¢t M and i € {0,1,2} then

JPD/3 = (‘1_2/(3]”)) (mod p)

if and only if L/(3M) € C;(q).

REMARK 2.1. According to Theorem 2.1 the value of m®~1/3 (mod p)
can be completely determined. The special cases m = 2,3 were treated by
E. Lehmer [L2] and K. S. Williams [W1] respectively. When m is a prime
for which m # 2,3, p, it follows from Corollary 2.1 that m®~=1/3 (mod p)
depends only on L/(3M) (modm). This important fact was first observed
by Jacobi [J], and proved by E. Lehmer [L1] and K. S. Williams [W1].

LEMMA 2.2. Let p # 3 be a prime and k € Zj,.
(i) If p=1 (mod3) and so p = A\ with A € Zw] and A\ = 2 (mod 3)

th
°n <k+1+2w> _<(k2+3)(k—1—2w)>
p 3 A 3.
(ii) If p=2 (mod3) then
k+1+2
<+ p+ ‘”) = (k24 3) P23k + 1 + 2w) D73 (mod p).
3

Proof. Suppose p = A\ =1 (mod 3) with A € Z[w] and XA = 2 (mod 3).
From the properties of the cubic residue character it is seen that

k+1+20\  [(k+14+2w\ (k+1+2w
( p )3_< A )3( A )3
E+1+20\ [(k—1-2w
() (),
E+1+2w\ [k—1-2w\>
:( A >3< A )3

_ ((k2+3)(k— 1—2w)> '

A
For (ii), we note that
(E+1420)P=(k+1)P +2PuwP =k +1+20w? =k —1— 2w (modp)
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and so

<k+ 1 —I-Zw)
p 3
p(p*2)+pT—2+%

=(k+142w)P DB = (k4+1+42w)"3

=(k—1-2w) P Bk 414 20)P~D/B(k 41 4 20)P+1)/3
= (k* +3)P=2D3(k 4 1 4 2w) P73 (mod p).

Now we are ready to give
THEOREM 2.2. Let p # 3 be a prime, i € {0,1,2} and k € Z, with
k* 4+ 3 #£ 0 (mod p).

(i) If p =1 (mod3) and so t* = —3 (modp) for some t € Z, then
k € Ci(p) if and only if

(p—1)/3 i
k—t —-1-1
(k‘—i—t) = < 5 ) (mod p).

(ii) If p =2 (mod3) then k € C;(p) if and only if
E_1_9u)\®tD/3
(i)
Proof. Suppose p=1 (mod3), 4p = L? +27TM? (L,M € Z) and L = 1
(mod 3). Since (L/(3M))? = t> = —3 (mod p) we may choose M so that

L =3Mt (modp). Set A = (L+3M)/2+ 3Mw. Then X € Z[w] and A = 2
(mod 3). Clearly NA = p and

11— L/(3M)
2

= w" (modp).

w

(mod \).

Thus, by Lemma 2.2 we have

<k+1—|—2w>
p 3

((k2 + 3)(11— 1— 2w)>

((k* +3)(k — 1 — 2w))P~/3

<(k2 +3) (k - 3§4> ) -

((k+t)2(k —1))P=D/3 (mod ).

It then follows that

142 »
ke Cz(p) RN <k++w> = W'
3

p

o (k+t)*(k—1t)PD/3 = (‘12_’5) (mod \)
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AN
& (k+t)*(k—1t)P b3 = ( ) (mod p)
(r—1)/3 i
k—t —-1-1
This proves (i).
Now consider (ii). Note that (k+ 14 2w)? =k — 1 — 2w (mod p). Using

Lemma 2.2 we see that

1+2
<k++‘“> = (k—1—2w)P=2/3(k 41 4 20)P=2/3( 41 4 20)P+D/3
3

p
k—1-=29 (p—2)/3 B
:(k+1+22) (b +1+20) 5+

(k=120 1 42y
C\k+1+2w k—1-—2w
E—1—2v (p+1)/3
=(— dp).
(k—|—1+2w> (modp)
This completes the proof.

(k+ 14 2w)P?

From Theorem 2.2 we have the following rational cubic reciprocity law.

COROLLARY 2.2. Let p and q be distinct primes, p = 1 (mod3), 4p =
L? +27M? (L,M € Z), L=1 (mod3), ¢ >3 and i € {0,1,2}.

(i) If ¢=1 (mod3) and hence 4q = L' +27TM"? (L', M’ € Z) then

q(Pfl)/?) = <_1 — Ié/(SM)> (modp)

if and only if
(LM/ - L/M>(q1)/3 _ <—1 - L’/(3M’)>i (

LM +L'M = 2 mod g).

(ii) If ¢ =2 (mod3) then

S8 = <_1_L2/<3M)> (mod p)

if and only if

L—3M —6Mw\“H/3
<L+3M+6Mw> = w' (modq).

Proof. If ¢| M, it follows from Corollary 2.1 that ¢(»=1/3 = 1 (modp).
If g1 M, using Corollary 2.1 and Theorem 2.2 we see that



302 Z. H. Sun

2 3M
L/(3M) — /M) o1 - vy@an Nt
(L/(3M)+L’/(3M/)> ( 5 > (mod q)
< if g =1 (mod 3),
L/(3M) —1— 2w
(L/(3M) +1+2w
This completes the proof.

S8 = <—1—L/(3M)> (modp) & = € Ci(q)

(a+1)/3 ‘
) =w' (modgq) if ¢ =2 (mod3).

REMARK 2.2. In the case i = 0 Corollary 2.2(i) was first observed by
Jacobi [J], and Corollary 2.2(ii) can be deduced from [W1]. Inspired by
K. Burde’s rational biquadratic reciprocity, H. von Lienen (see [Li], [Bu])
established the first rational cubic reciprocity law.

THEOREM 2.3. Let p > 3 be a prime, k € Z, and k* + 3 # 0 (mod p).

(i) If p = 1 (mod3) and so t> = —3 (modp) for some t € Z then
k € Co(p) if and only if (k*> + 3)(k +t) is a cubic residue (mod p).
(ii) If p=2 (mod3) then k € Cy(p) if and only if

Z <(p+1)/3)<k:+1>T
T 2
r=(p+1)/3 (mod 3)

1/k+3 (p+1)/3 1 o
3<2> +§(2(k‘2+3)) (p—2)/3 (modp).

Proof. If p=1 (mod3), it follows from Theorem 2.2 that
E—¢\®1/3
ke Cyp) & <k:+t> =1 (modp)
& (K24 3)(k+1))?~Y/3 =1 (mod p)
& (k% + 3)(k + t) is a cubic residue (mod p).

This proves (i).
Now consider (ii). For ¢ =0, 1,2 set

(p+1)/3—r
A — Z ((p+1)/3)(k;1> .
r=i (mod 3) "
Then Ag + Ay + Ay = (14 (k4 1)/2)®+1/3 and hence

k—l_ 1 (p+1)/3
(2 +w> :A0+A1w+A2w2:AO—A2+(A1—A2)w
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2
(p+1)/3

In view of Lemma 2.2(i) we obtain

2~/ (2 4 3)-(r-2)/3 (M‘))
p 3

(p+1)/3 (p+1)/3
=240+ Ay — (’“'2“)’) + <Ao 424, - <k2+3> )w (mod p).

(p+1)/3
oAyt A, <k+3>

If (M) =1, it is clear that
P 3

kE+3

2

(r+1)/3
Ao+ 24, = <k;—3> (mod p)

(p+1)/3
240+ Ay = < ) 427 (PFD/3(k2 4 3)=(P=2/3 (mod p),

and therefore that

(p+1)/3
k+3
3Ap = (2> + (2(k? +3))~P=2/3 (mod p).

If (’““‘17“'2“’) = w, then we have
p /3
(p+1)/3
240+ Ay = <k;—3> (mod p),
Ag+2A, = ( : ) + 2= (P32 4 3)=(P=2)/3 (mod p)
and hence
(p+1)/3
(2.7) 34, = (’f’) — 5(2(k;2 +3))"P=2/3 (mod p).
If (’“HTH“’)3 = w?, one can similarly prove that (2.7) holds.

Now, by the above, (ii) follows and the proof is complete.

COROLLARY 2.3. Let m be the product of primes of the form 3n+1, and
hence t? = —3 (modm) for some t € Z. If x € Z and (x(x® —1),m) = 1
then Zotlt € Co(m).

3—1
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Proof. Write m = py...p,, where py,...,p, are primes of the form
3n+1. Fori=1,...,r it is clear that t* = —3 (mod p;). Thus,

2341 \? 234+ 1\2 1223
t = 1-— = mod p;
(:531) 3 ( (»”631)) (w3*1)2¢0( odpi)

341\ 341 1243 223t
x° + " 13 x° + bt) = x ‘ x
3 —1 3 —1 (3 —-1)2 a3-1

_ < 20t )3 (mod ;).

3 —1

Applying Theorem 2.3(i) we find i;ﬂt € Co(p;) and hence

<i2+}t+1+2w> ﬁ(;iﬂwuzw) 1
m 3 =1 pi 3

This is the result.

3. The structure of CJ(p). In this section we introduce the sets
Ci(p), Ci(p) and C4(p), and study their group structure. As an application
we confirm a conjecture due to K. S. Williams [W1].

DEFINITION 3.1. Let p # 3 be a prime, k € Z,, [k], = {z | z = k
(modp), x € Z,} and [oo], = {n/m | m, n € Z, p|m, pfn}. Define

Co(p) = {lklp | k € Co(p)} U{[oclp},
Ci(p) ={[klp | k € C1(p)} and Cy(p) = {[k], | k € Ca(p)}-
As an example, taking p = 5 we have C{(5) = {[0]5, [c0]5}, C1(5) =
{{1]5,[2]5} and C3(5) = {[-1]5, [-2]5}.
Let p be a prime greater than 3,
D :{Z/pZ if p=1 (mod3),
P Z|w)/pZ|w] if p=2 (mod3)
be the residue class ring modulo p, and U, the multiplicative group of D,,.
It is well known that U, is a cyclic group of order p(3_(_73))/2 — 1. Denote

the unique subgroup of order p — (_73) of U, by G,,. Then G, is also a cyclic

group. So

{g]g*~ ' =1 (modp), g"#1 (modp) (n=1,...,p—2), g€ Z}
if p=1 (mod 3),

{g]g"*' =1 (modp), ¢" #1 (modp) (n=1,...,p), g € Z[w]}
if p =2 (mod 3)

Sp =

# 0.
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We are now ready to give

THEOREM 3.1. Let p be a prime greater than 3 and g € S,. For
1=0,1,2 we have
-3
b= (7)

(i) ICi(p)| =
(i)  Ci(p)

—3 /=3 3T+i+1
= (p—(z2)/3y9~ — +1 _ e
-{[(F)arar >ggr+¢_1]p r=0L (- ()31},

Proof. Suppose k € Z, with k* +3 # 0 (modp). If p=1 (mod 3), it is
clear that (—1 — 2¢g(P=1)/3)2 = —3 (modp). For i € {0,1,2} it follows from

Theorem 2.2 that
k:—|—1—|—29(p’1)/3 (p—1)/3
ke Oz(p) And <k¢ _1— 29(7)71)/3
k41420700 o,
E—1— 2g(p_1)/3 =g (mOdp)

for some r € {0,1,...,(p—1)/3 -1}
g3r+i +1
g3t — 1
for some r € {0,1,...,(p—4)/3}.

If p=2 (mod3), it is clear that ¢g?®*1/3 = w or w? (modp). For i €
{0,1,2} it follows from Theorem 2.2 that

= ¢! P—1/3 (mod p)

& k= (142977 D/3) (mod p)

k=1 =29t/ BrDE +1)/3
keci(p)@<k+1+2g(1)+1)/3> = ¢'®+1/3 (mod p)
k—1—2¢Pt+tD)/3 ,
9 = g3r+z (modp)

kE+1+2gt1)/3
for some r € {0,1,...,(p+1)/3 -1}

3r+i
+1

for some r € {0,1,...,(p—2)/3}.
To conclude the proof, we note that

-3 -3 g3-0+0+1
() D] i

D PR Y
and that
37’1+i 3?"2+i
e 2 2 grtigd
g37”1+i — 1 - 1 + g3T1+i — 1 $ 1 + gST2+i _ 1 - 93T2+i — 1 (mOdp)

provided r1 # 79 (mod (p — (_?3))/3)
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COROLLARY 3.1. Let p > 3 be a prime, and R, a complete residue
system modulo p. Then

1
Z k= —3 (mod p).
k€Ci(p)NR,

Proof. Let g € S, and m = (p — (7?3))/3 It follows from Theorem 3.1

that
m—1
-3 m gt 1
Z kE()(1+29 )Z 3r+1 _ q
kECH (p)NR, p =09
_3 m—1 2
= (p) (1+2¢™) (m + ; P — 1> (mod p).
Since
m—1 m—1 m—1
1 1 3r+1\s
Z 3r+1 _ _Z 3rt1ym _ (™)
r=0 9 1 r=0 (g ) 1 s=0
m—1 1 m—1 1 m—1 m—1
_ 3sr _ 3
=) a2 s D9 )
r=0 s=0 s=0 r=0
1 1 g m
_ s = d
gm_l(m;g — ) P (modp),
we find
-3 2
> k= <><1+2gm)<m+ - )
p m—1
kecl(}’))ﬂRp
_ -3 m 2m _92m
_<p>m(g g )gm—l
(Note that 1+ ¢™ + ¢*™ = (¢*™ — 1)/(¢™ — 1) =0 (mod p).)

= (p)mg3m = —% (mod p).

REMARK 3.1. Corollary 3.1 is equivalent to a result conjectured by
K. S. Williams [W1].

COROLLARY 3.2. Let p > 3 be a prime, and R, a complete residue
system modulo p. Then

{efrecrmnm (52) 1)

N

We are done.
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Proof. Let g € S,. In view of Theorem 3.1 we can write

Cl(p)ﬂRp:{kr‘r:O,l,...,(p—(*73))/3—1},

where

-3 (=3 3r+1 + 1
k= <p> (142975 ”/3)73%“ — (modp).

From this it follows that

2
_ _ 2
K2 = (14 4900/ 4 49(2@(;)))/3)(1 b 1)

B 2 2 3.4. 937‘4-1
=-3 <1 + gt — 1 (2 + g3l — 1)) =3~ (g3r+1 _ 1)2 (modp)

and so
k2 +3 p—1 g3r+1 —1
T = (k2 1+ 3)p=1/2 = (_3.g)e-1)/2 S5 Grt), J =~
(B52) =2+ (-3 4)PD/2 . ST
-3 —3 r
= (3), e ey 9 -1
- P g(3r+1)p -1
—3
_ (=3 (_1)3r+1g(@)_1(3r+1)ﬁ
AP gGIBrE
= (=1)"*" (modp).
Thus,
k2 +3 k3. .,+3
Mon T3 (B T2 forn=0,1,...,(p— (=2))/6 — 1.
P p P

This proves the corollary.

THEOREM 3.2. Let p be a prime greater than 3. For [k],, [k'], € Cj(p)U
Ci(p) U Ca(p) define
kk' — 3

(K] * [k/]p = [ k+ K

Then C{(p) U C1(p) U C4(p) forms a cyclic group of order p — (_73), and
C{(p) is a subgroup of order (p— (_?3))/3 Moreover, C{(p), Ci(p) and
Ch(p) are the three distinct cosets of C{(p).

] (K, * (o0l = [oclp * [K]p = [K],).

Proof. Suppose g € S,. From Theorem 3.1 we know that

Gy = {I6] | r =01 (2] -1},

where
-3 _ (=3 gr + 1
k], = 14 9q@=(F)/3 ]
= () a2 %)
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Since
/(-3 (=3 2g+1 g +1
T3\ (1 4 9g@—(32)/3 +1_
kik‘j—ﬂ B << >( +29 ) g —1 gJ—l
ki+k; | s J
+k; (3)1+@@<§w%<{+1+9+1>
D g—1 g -1

(3 (=230 + D@7+ 1) + (¢ = 1)(¢? — 1)
( ) L+2g )<gi+1><gf—1)+<gi—1><gi+1>L

-3 —5yy/5.9 + 1
— —)1+2 (r—(32))/3 ‘
( p ) + g )gz+‘7 _ 1 p7

we see that
kik; — 3
i bl = | 5255 = sl

where () denotes the least nonnegative residue of x modulo p — (773)

By the above, Cj(p) UC1(p) UC)(p) is a cyclic group generated by [k1],.
Applying Theorem 3.1 we see that C(p) is a cyclic group generated by [ks],,
and that C{(p), C1(p) and C%(p) are the three cosets of C{(p). The proof is

now complete.

COROLLARY 3.3. Let p be a prime greater than 3. Then
39
C(/)(p): u mG{O,l,...,p—l}, $27_é_3 (mOdp) :
322 —3 »

Proof. Clearly

) = e i

Suppose k € Zj. It follows from Theorem 3.2 that

K]y € Cé(p) & [kl = [z]p * [2]p * [2]p
for some [z], € Cy(p) U C1(p) U Co(p)

z? -3 3 — 92 .
& [k], = 5 * [z]p = 322 3 for some integer x
P

satisfying 2% + 3 # 0 (mod p) and z € {0,1,...,p — 1}.
So the result follows.

COROLLARY 3.4. Let p > 3 be a prime, i € {0,1,2} and [k;], € C!(p).
For [k], € C{(p) define
o) = | F2]  tellodl) = ).

Then ¢ is a one-to-one correspondence from C{(p) to Ci(p).
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Proof. In view of Theorem 3.2,

Ci(p) = [kilpCo(p) = {e([k]p) | [K]p € Co(p)}-

So the result follows.

REMARK 3.2. Corollaries 3.3 and 3.4 provide a simple method of calcu-
lating C{(p), C1(p) and C%(p) for any prime p > 3.

4. Cubic congruences. Let p be a prime greater than 3. In this
section we consider the general cubic congruence 23 + Az?> + Bz +C = 0
(modp), where A, B,C € Z,.

In [St] Stickelberger showed that the number of solutions of x3 + Az? +
Bz + C =0 (modp) is given by

(D
Oor3 1f<>:1,
p
D
| if<>:—1,
p

where D = A2B? — 4B3 — 4A3C — 27C? + 18ABC.
Since

N =

A\®  A2_3B A\ 243 —9AB 1+ 27C
23+ Az’ +Bx+C = <x+3> —3-9<x+3>—|— o + ,

it is enough to discuss the congruence z3 — 3ax —ab = 0 (mod p) (a,b € Z,).

LEMMA 4.1. Assume that p is a prime greater than 3, k € Z, and
k* +3 # 0 (modp). Then k € Co(p) if and only if the congruence x> —
9(k? + 3)x — 18(k? + 3) = 0 (modp) is solvable. Moreover, if k € Co(p)
then the solutions of the above congruence are given by

_ J (=3 +Fkt)u(l —u) (modp) if p=1 (mod3),

| (k= 3+ 2kw)u(l —u) (modp) if p=2 (mod3),
where t and u satisfy t> = —3 (modp) (t € Z) and

3 IZIE (modp) (u € Z) if p=1 (mod3),
u =
E—1—
ks+1+§§ (modp) (u € Zlw]) if p=2 (mod3).

Proof. If £k = 0 (modp), then k € Cy(p). Clearly, the congruence
23 — 9(k* + 3)x — 18(k? + 3) = 0 (mod p) has the solutions z = 6, -3, —3
(mod p). So the result is true when p | k.

Now assume k # 0 (mod p). It follows from Corollary 3.3 that
s3 —9s
3s2 -3
& 5% — 3ks® — 9s 4 3k = 0 (mod p) is solvable.

keCyp) k= (mod p) for some s € {0,1,...,p—1}
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Set v = @ (mod p). Then
k? k K\ k\°
973( 3 _ 3ks® — 9s + 3k) :9k2—9k2-3—9<3> + (3>
s s s s
=9k* —9k*(x +3) —9(z +3)* + (z +3)3
=23 — 9(k* + 3)x — 18(k* + 3) (modp).
So k € Cy(p) if and only if 23 — 9(k? + 3)x — 18(k* + 3) = 0 (modp) is
solvable.

Let k € Cy(p) and r =t or 1+ 2w according as p = 1 or 2 (mod 3). From
Theorem 2.2 we know that

b — = (/3
<k:+r> =1 (modp).

So the congruence

k4
is solvable. Suppose u?® = 'er: (modp) and x = (=3 + kr)u(l — u) (modp).
Then

(mod p)

(1 —u)® = u?(1 — 3u + 3u® —u?)

— 2
Ek r( ! —3u+3u2> (mod p)

k+r\k+r

and hence

23— 9(k? +3) = (-3 + k)31 —u)® — 9(E* + 3)(=3 + kr)(u — u?)

k— 2
r3(k+1r)? T( " —3u+3u2>

E+r\k+r
—9r(k+7)2(k —r)(u —u?)
= 18(k? + 3) (mod p).
When p = 2 (mod 3) it is easily seen that uu® = 1 (mod p) and so that
u=u"! (modp). Hence,

(k=34 2kw)u(l —u) = (1+2w) (k+1+2w) u(l —7)

= (-1 2w)(k—1— 2w)i<1 _ i)
_ (1+2w)(k‘—1—2w)u(1u;u)
= (k — 3+ 2kw)u(l — u) (modp).

This shows that (k — 3 + 2kw)u(1 — ) is congruent to an integer modulo p.
By the above, the lemma is proved.
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THEOREM 4.1. Let p > 3 be a prime, a,b,s € Zy,, ab # 0 (modp) and
5?2 = —3(b* — 4a) (modp). Then the congruence x®> — 3azx — ab =0 (mod p)
is solvable if and only if s/b € Co(p). Moreover, if s/b € Cy(p) then the
solutions of the above congruence are given by
_ (st — 3b)u(1l —u) (modp) if p=1 (mod3),
+(s —3b+ 2sw)u(l —u) (modp) if p=2 (mod3),

where t and u satisfy t> = —3 (modp) (t € Z) and

L zI_Zi (modp) (u € Z) if p=1 (mod3),
m (modp) (u € Zw]) if p=2 (mod3).

Proof. Set k = s/b. Then k? +3 = 12a/b* # 0 (mod p). It is clear that

3 108a 216a
T T e

_ (g)s <<2x>3 _ 3. %x - ab) (mod p).

So the result follows from Lemma 4.1.

23— 9(k*+3)z - 18(k*+3) ==

COROLLARY 4.1. Let p > 3 be a prime and a,b € Z,. Then the congru-
ence 23 —3ax—ab = 0 (mod p) is unsolvable if and only if —3(b*—4a) = k?b?
(mod p) for some k € C1(p).

Proof. If ab= 0 (mod p) then 03> —3a-0—ab = 0 (mod p). If b* —4a =0
(mod p) then b* — 3ab — ab = 0 (modp). So 23 — 3ax — ab = 0 (mod p) is
solvable when ab(b?® — 4a) = 0 (mod p).

Now assume ab(b? — 4a) # 0 (modp). Since —4(—3a)? — 27(—ab)? =
—3(b? — 4a) - 9a?, using Stickelberger’s result we see that 23 — 3az —ab =0

(mod p) has one solution if (w) = 1.

If (@) = 1, there is an integer k such that k? = —3(b? — 4a)/b?
(mod p). Since k? + 3 = 12a/b*> # 0 (mod p) we have k € Cy(p) U C1(p) U
Cs(p). Applying Theorem 4.1 we see that 2° — 3az — ab = 0 (modp) is
solvable if and only if k € Co(p). So 2® — 3ax —ab = 0 (mod p) is unsolvable
if and only if —3(b? — 4a) = k%b? (mod p) for some k € C;(p) U Ca(p).

Since k € Co(p) if and only if —k € C(p), by the above the corollary is
proved.

REMARK 4.1. If p is a prime greater than 3, a,b € Z, and (

—1, one can easily check that the unique solution of 23 —3ax—ab = 0 (mod p)
is given by

—3(b%*—4a)
fa)
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_(=3
where {v,,} is defined by vyp = 2,v1 = b and v, 41 = bv, — av,_1 (n > 1).
As applications of Theorem 4.1 we have

THEOREM 4.2. Let p > 3 be a prime, m,n € Z, and mn # 0 (modp).
Then

(]

Proof. Set b =3n/m. Then b € Z, and b # 0 (mod p). From Corollary
4.1 and Theorem 3.1(i) we see that

x> n
H[mx—i-nL T €Ly, TF# - (modp)}’

- H [&ibh

= |{[a], | * — 3az — ab = 0 (mod p) is solvable}|

= (3)
PN

n
—— d Z
v -2 (modp), €2,

T €Ly, T F —g (modp)}‘

=p— |{la], | 2> — 3ax — ab = 0 (mod p) is unsolvable}|
=p— {la], | =3(b* — 4a) = k*b* (mod p) for some k € C1(p)}|

o ffe =2

3
We are done.

keCl(P)H =p-

THEOREM 4.3. Let p > 3 be a prime and A, B,C € Z,,. Then

[{[z® + A2® + Bz + C], | z € Z,}]|
= |{[z* + A2®> + B2+ O], |z € {0,1,...,p— 1}}|

]%2 if p=1 (mod3) and A?> = 3B (modp),
=<{p if p=2 (mod3) and A? = 3B (modp),
— (=3
p—p?)m if A2 # 3B (modp).

Proof. Since

"3

A\® A2_-3B A\ 243 —9AB +27C
333+Am2+B:U+C:<m—|—3> —3<:L’ >+ o7 +

we see that
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xGZpH

{[z3 + Az? +Bx+Cl, |z € Zyp}|
{[3 A% - 3B 2A3—9AB+27C]
= xr° —
p

T+

3 27

A%? - 3B
= {{x?’—x} LUEZp}
3 p

A? - 3B
z3 — Tgx =t (mod p) is solvable, t € Zp}

-1
1+ pT if p=1 (mod3) and A? = 3B (modp),
P if p=2 (mod3) and A% = 3B (mod p),
- A2-3B  A?-3B
H[b]p 3 3. 93 T — 93 b =0 (modp) issolvable}‘

if A2 # 3B (modp).
Now suppose A? # 3B (modp) and a = (A? —3B)/9. By Corollaries
4.1 and 3.2 we get
[{[b], | z° — 3az — ab = 0 (mod p) is solvable}|
=p—|{[b], | z* — 3ax — ab = 0 (mod p) is unsolvable}|
=p— |{[b], | =3(b* — 4a) = k*b* (mod p) for some k € C1(p)}|

12a
— _ 2: -
== [{m, |9 = s

-r={[@¥s | (57°) - (5) eecm]

Putting the above together yields the result.

mod p) for some k € Cy (p)}‘

5. Connections with binary quadratic forms. Let d be a squarefree
integer, and p a prime greater than 3 satisfying (%) = 1. In this section
we obtain a criterion for s(d) € C;(p) (i € {0,1,2}) in terms of the binary
quadratic forms of discriminant 4d, where s(d) satisfies (s(d))? = d (mod p).

THEOREM 5.1. Let p be a prime greater than 3 and p = ax?+2bxy+ cy?
with a,b,c,z,y € Z. If d = b>—ac, a = 2°3"a; (2fa1,31a1), d+3 = 2°3%d;
(24dy,31d1), (a,d+3) =1 and a(d+ 3) £ 0 (mod p), then
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<ax + b+ 1)y + 2yw)
a1 d3p 3

w9524 if y =0 (mod 3),
wfi(w) if a=0 (mod3) and x = uy (mod9),

= { w2 if a(ax +by) # 0 (mod 3) and z = uy (mod9),
1 if ax + by = 0 (mod 9),
wEE) if ax + by = £3y (mod 9),

where
1
fi(u) = 3< 2 > <(2bu+c)(2b +C) —

- 1)(1 —b(f’)) +ac+2°‘a1<2;21) —4>,
J((=(=a) (e () )
o) (52)
)

_J1  dfm=1 (mod3),
-1 ifm=-1(mod3).

and

Proof. For later use we first point out the following facts:

(i) ¥ # 0 (modp). Indeed, if p|y then p|az? and so p | z. Thus,
p = ax? + 2bzy + cy? = 0 (mod p?). This is a contradiction.

(ii) If 7 = ax + by + y + 2yw then (N7,a) = (N7,d + 3) = 1. Indeed,
clearly Nm = 77 = (az + by)? + 3y?> = ap + (d + 3)y*>. Thus, (N7, a) =
((d+3)y*,a) =1 and (N7,d + 3) = (ap,d + 3) = 1.

(iii) If A+ Bw € Z[w] and A+ Bw = 2 (mod 3) then (452%55), = w
Indeed, since 3 = —w?(1 — w)?, it follows from (1.1) and (1.2) that

2 2
3 - w 1—w
A+ Bw 3_ A+ Bw 3 A+ Bw 3

_ W2A+BH1)/3 | A(A+1)/3 _ ~B/3

-B/3.

Now let m = ax + (b + 1)y + 2yw. Since N(1 —w) = 3 and N7 =
(ax+by)?+3y% # 0 (mod 9), there are integers i,k € {0,1} and j € {0,1,2}
such that 7 = (—1)w’(1 — w)*7’, where 7’ € Z[w] and 7’ = 2 (mod 3).
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Assume y = 3%y (31yo) and 7' = A + Bw. Then we have

(a:z-i- (b+ 1)y+2yw> _ ((—1)%]‘(1 —w)kﬂ’)g

. p

), (5,60, C) (52,0,
(2),(5),-6), (), (%),
(=
(

I
<&

SRS

—k 32r+s+2t ) < 22a+ﬁa2d1y0 )
! 3

)
)
) h j) <22a+ﬁ7;/%d1yo)
)
),
),

SRS

SRS

-t —(s=r—DB/3 ™ (—1)'w?*(1 4 2w)F\ 7
22etbaidiyy Ju\  2etPaidiyg )y

—k k—j 2043 2
), (), 5), ()
3 22O‘+’ga%dly§ 3 a%dl s\2/3 Yo/ 3

(by Proposition 2.1)

I
T |E

SRS

2(j—k)
d rHt=s)B/3( Y T
b3 2248 a3dyyg 3 aid 3

(Note that (5), = (), =1.)

m
Jj—k -1
) w(r+t—s)B/3 <7T> ]
2a+25a1d2py0 ard? ),
That is,

az + (b+ 1)y + 2yw (r+t—s)B/3 w =
(5.1) 7 =w o 2, P ).
a,ayp 3 a167PYo

Let us consider five cases.

(
(
(
(
(
(
- (e

CASE 1: y = 0 (mod3). Since p = ax? + 2bxy + cy? = azx?® (mod 3) we
have ax Z 0 (mod 3) and so 7 = 0. Clearly 7/ = —(=2)7. Hence j =k =0
and B = —2(=2)y. From (5.1) we see that

<ax+(b+1)y+29w> -G (t-s) _ (-2
a1d3p 5

CASE 2: a =0 (mod 3). In this case, y # 0 (mod 3). Since (a,d+3) =1
we have b? = ac — 3+ (d + 3) £ 0 (mod 3) and so ax + by Z 0 (mod 3).
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If y 20 (mod 3),x = uy (mod9) and ax + by #Z 0 (mod 3), then clearly

(_ <_y3)m — <_y3) (2y + (—ax — by + y)w)

if au+b=1 (mod 3),

<>w27r = <_3> (—ax — by +y — (ax + by + y)w)
if au+b=—1 (mod3).

From this and (5.1) it follows that

(a:zc + 0+ 1)y + 2yw>
ald%p 3

2
w =2)(—az—by+y)(r—s)/3 =
<2a+25a1d%py>3w : if au+b=1 (mod 3),

w —(22)(avtby+y)(r—s)/3 4 _
(20‘+25a1d%py)3w if au+ b= —1 (mod 3)

—(osp)
(v T lautb— () (s-1) /3.
20428, dipy ) ,

Observing that

v=(a( 2+2by—i—c 3._3_”3+ *7 3
m=(o(5) #2540+ ()
= (au2 + 2bu + ¢) <_y3> (mod 9),

we get

ax + (b+ 1)y + 2yw
(5.2) < o
1 1p 3

—(a35)

_ lautb—(525) (s=r)/3 w
2028a1d3 (au? + 2bu+c¢) / 4

Since a = 0 (mod 3) we must have d+3 # 0 (mod 3) and so d = b*—ac = 1
(mod 3). Hence,

2
w _ w _2(1—-d-3)/3 _ , (d—1)/3+1
= =w =w
(2%?)3 <d+3>3
and

w [ w w w
20280, d2 (au? +2bu+c¢) J,  \ 2% ) 4\ 22Pd? ) s\ au? +2bu+c ),

— 3 U-Gma)2ta) |5l B (= (o) (u® +2bute))
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In view of (5.2),

<ax + b+ 1y + 2yw> _
a1d3p 5 ’

where

=ttt () GO () 7e)
+ % +14 ;<1 - <2b;i—c>(GUQ +2bu+c)>>

4 () (B e ()

+ <_53> <1 - <2b;i C>(au2 + 2bu + c)>).

alr= (52 )0)

0 (mod9) ifa=0 (mod9) or u =0 (mod3),

a(—be) (1 _ <_bi> (—bc)> — 0 (mod9)
if @ = £3 (mod9) and u = —be (mod 3)

ﬁ
IS
IS

|
/~
[
=[¢,
~
PR
Do
S
S
4w
)
~—
)
<
N
|

and

d+3:b2—1—ac+451—b<_b3> —ac+4 (mod9),

we see that n; = fi(u) (mod 3) and so

1 2
<a$+(b+ 2)y+ yw> _ A
ardip 3

CASE 3: a(az + by) # 0 (mod 3). In this case, r = 0. Suppose z = uy
(mod9). Then

2%ay (au® 4 2bu + ¢) = a*u® + 2abu + ac

:<3.W+b—(a;ib)+< -3 )){d
3 au +b

-3
=1—-d-— -1 .
d <(au+b)(au+b> > (mod 9)
From this and (5.2) it follows that
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(a:z: + 0+ 1)y + 2yw>
a1d3p 5

-3
w _(au+b)

- (22%%(1 —d = ((au+) () — 1)))3

where

o=l (- ()7
x <1 —d- <(au+b)<au_ib> - 1))) 4 S(GUH; mez)
=3l (e (G) )
3

-3
ws(au—i—b—(m))/S _ Wn27

=(1—d) (1__3d> —20d, (2;31> (mod9),

we obtain

<ax +(b+ 1)y + 2yw> _ e = (W)
ald%p 3

CASE 4: ax + by = 0 (mod9). Since ax + by = 0 (mod3) we have
ap = (az +by)? — dy? = —dy? (mod 9). We claim that ady # 0 (mod 3) and
so that r=s=1¢t=0.

If y =0 (mod 3) then

p = az® + 2bxy + cy® = (ax + by)z + (br + cy)y = 0 (mod 3).
Thus, y Z 0 (mod 3).

If @ = 0 (mod3) then dy?> = —ap = 0 (mod3). Since y #Z 0 (mod 3)
we have d = 0 (mod3) and so d +3 = 0 (mod3). This contradicts the
assumption (a,d + 3) = 1. Hence, a # 0 (mod 3).

By the above, ay # 0 (mod 3) and dy? = —ap (mod 9). So d # 0 (mod 3).
This proves the assertion.

Now, it is easy to check that

()
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So we have

—3\2 b
r=s=t=0, j=k=1 and B= <>(ax+ )
Y 3
This together with (5.1) gives
(aa:+(b+ 1)y+2yw> o
= =w =1.
ardip 3

CASE 5: ax + by = +3y (mod9). In this case, ax + by = 0 (mod 3). By
the above claim we have » = s = ¢ = 0. It is clear that

()= G ror -57))

if ax + by = 3y (mod 9),

(R (52

if ax 4+ by = —3y (mod9).

Thus, by (5.1),

<ax + b+ 1)y + 2yw>
ald%p 3

2—1
w . o
(WW%py)s lf ar + by = 3y (mOd 9),

0—1
w
_— if ax + by = —3y (mod9).
<2a+2ﬁa1d%py>3 Y y ( )
Since
2%a1(2%dy)*py = a(d + 3)*(ax? + 2bzy + cy®)y

= (d+ 3)*((az + by)* — dy*)y = (d* — 3d)(—d)y”

= (—d’ +3d*)y’ = (— <_d3> + 3> <_y3> (mod9),
we obtain

w w %(1—(3—(%3))( 733 )) —3
- = — = w 3= = ()
204280, d2py ) , 3—(F) /3

and hence

b+ 1 2 -
<a%‘+( + 2)y+ yw) LT
ardip 3
This completes the proof.

From Theorem 5.1 we have
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THEOREM 5.2. Let p be a prime greater than 3, d € {—1,—2,—5,—6,
—7,—15}, () =1 and (s(d))? = d (modp). Then s(d) € Co(p) if and only

P
if p can be represented by one of the corresponding binary quadratic forms

in Table 5.1.

Table 5.1
d Binary quadratic forms
-1 2?2 +81y%, 222 4 2xy + 41y
-2 22 + 16292, 222 + 81y2
—5 |22 + 405y2, 522 + 81y2, 1022 + 10zy + 43y2, 222 + 22y + 20342
-6 22 + 54y?, 222 + 27y
-7 22 + 567y?, 7z + 81y2, 23z2 + 20zy + 29>
-15 2?2 +135y2, ba? + 279>

Proof. If d = —1 then (_71) =1 and so p = 22 + y? for some z,y € Z.

Setting a =1, b =0 and ¢ = 1 in Theorem 5.1 we get

w(E4 if 31y,
<x+y+2yw> _ 0@/ if 34z and @ = uy (mod9),
D 3 1 1f9|$,
wtl if x = £3y (mod9).

Since y # 0 (mod p) and s(—1) = +x/y (mod p) we see that
s(=1) € Co(p) & z/y € Co(p)

2 1+2
ﬁ(fﬂﬂ/w‘)) :<x/y++w) 1
p 3 p 3

-3
<9z, 9|yorx= ()y (mod9).
Ty

Clearly, p = 2% + y? with x,y € Z and 9| zy if and only if p = 22 + 81y?
for some x1,y1 € Z. If p = 2? + y? with z = (;—S)y (mod 9) then p =
203 + 2z1y1 + 41y7 for z1 = §(4z + 5(;—5’)?;) and y; = §(z — (;—S)y)
Conversely, if p = 222 + 2x1y; + 41y? with 21,7, € Z then p = 22 + 42 for
x =21 +5y; and y = 21 — 4y;. Also, z = (;—j)y (mod 9).

By the above, s(—1) € Cy(p) if and only if p = 22 + 81y® or p =
222 + 2xy + 41y? for some z,y € Z.

If d = —2 then (_72) =1 and so p = z? + 2y for some z,y € Z. Using
the fact that s(—2) = +x/y (mod p) and Theorem 5.1 we see that

2
s(=2) € Colp) <:z:+y;yw

& p=1a?+162yF or p = 223 + 81y} (x1,y1 € Z).

> =1<9|zor9ly
3
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If d = —5 then (_—5) =1 and so p = 2% + 5y? or p = 322 + 2xy + 212 for
some z,y € Z. Using Theorem 5.1 we see that

z/y € Co(p) 9|z or9|y
if p = 22 + 512,

1+3z/y € Co(p) © 9|z or x = —2y (mod9)
if p = 322 + 22y + 292

s(=5) € Cy(p) &

This yields the result.
If d = —6 then (_—6) =1 and so p = z2 + 692 or p = 222 + 3y? for some
x,y € Z. Applying Theorem 5.1 we get

N z/y € Co(p) & 3|y if p=2+6y?,
s(=6) € Colp) & {Qx/ye Co(p) & 3|y if p=22%+ 39>
This gives the result.
If d = —7 then (_?7) =1 and so p = 22+ 7y? for some z,y € Z. Applying
Theorem 5.1 we see that

s(=7) € Co(p) & x/y € Co(p) 9|z, 9|y or x = 4<;§>y (mod 9).

This yields the desired result.
If d = —15 then (_715) = 1 and hence p = 2% + 15y* or p = 5z? + 3y?
for some x,y € Z. In view of Theorem 5.1 we get

z/y € Co(p) & 3|y if p=a? + 1547,
-1
5(=15) € Colp) & {5x/y € Co(p) & 3|y if p =522+ 3y>.
This deduces the result.

Combining the above we prove the theorem.

COROLLARY 5.1. Let p be a prime greater than 3.
(i) If (_71) =1 then x® + 6z + 4 = 0 (mod p) is solvable if and only if

p = x2 + 81y? or p = 222 + 22y + 41y> for some x,y € Z.

(ii) If (*72) =1 then x® — 92 — 18 = 0 (mod p) is solvable if and only if
p=z2 4+ 162y? or p = 222 4 81y? for some z,y € 7Z.

(i) If (_76) =1 then 23 + 3z + 2 = 0 (mod p) is solvable if and only if
p = 22 + 54y? or p = 222 + 27y? for some x,y € Z.

(iv) If (_715) =1 then 2% + 3z +1 =0 (mod p) is solvable if and only if
p = x? + 135y? or p = 522 + 27y? for some x,y € 7Z.

Proof. If (%) =1, then (s(—1))2 = —1 (modp) for some s(—1) € Z.
Set @ = —2 and b = 2. Then (6s(—1))? = —3(b> — 4a) (modp). From
Theorems 4.1 and 5.2 we see that
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23 + 62 +4 =0 (modp) is solvable < 6s(—1)/2 € Cy(p)
< s(—1) € Cy(p) (by Proposition 2.2(i))

& p=a2+81y? or p =222 + 2wy + 41y? (x,y € 7).

This proves (i).
Similarly, by using Theorems 4.1 and 5.2 one can prove (ii)—(iv).

REMARK 5.1. Kronecker [K] showed that 2® + 2 +1 = 0 (modp) is
solvable for prime p satisfying (_T?’l) = 1 if and only if p = 22 + 31y? for
some integers z and y. In 1973, E. Lehmer [L3] proved Corollary 5.1(iv) in

the case p = 1 (mod 3). For recent important papers along this line one may
consult [WH] and [SW].

COROLLARY 5.2. Let p be a prime of the form 3n + 1, and €4 denote

the fundamental unit of the quadratic field Q(\/d).
(i) If d € {2,3,5} and (%) = 1 then g4 is a cubic residue (mod p) if and

only if p = x? +27dy? for some integers x and y.

(ii) If (g) =1 then g6 (= 5+ 2V6) is a cubic residue (mod p) if and
only if p = x? + 162y> for some integers x and y.

(i) If (%) =1 then e15 (= 4 ++/15) is a cubic residue (mod p) if and
only if p = x%+405y® or p = 1022+ 102y +43y? for some integers x and v.

(iv) If (2?1) =1 then €91 (= 3(5+ V21)) is a cubic residue (mod p) if
and only if p = x® + 567y? or p = Tx? + 81y? for some integers x and y.

Proof. Suppose t? = —3 (mod p), (%d) =l and (s(—d))? = —d (mod p).
By Theorem 2.2(i), s(—d) € Cy(p) if and only if (s(—d) —t)/(s(—d) +t) is
a cubic residue (mod p). Observing that

s(=d) =t _ (s(=d))* = 2s(=d)t +1* _ d+3+2s(=d)t

SCd Tt Cdr—t - -3 (wodp)
and that (s(—d)t)? = 3d (mod p) we find that
2
(5.3) s(—d) € Cy(p) & w is a cubic residue (mod p).
Clearly,
(1+v2)?
PR ) N
= 3+2v2 ©3
1 1 °
. +2\/5: ( +2\/5 /<3—|—2\/5>’ cs = 51 2V,

1
€15 =4+ V15, €21 25(54—\/21)
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Hence, combining Theorem 5.2 with (5.3) in the cases d = 6,1,15,2,5,7
gives the result.

REMARK 5.2. Corollary 5.2(i) was known by E. Lehmer [L3], and the
rest of Corollary 5.2 is new. For a general result on the cubic character of
quadratic units one may consult [We].

THEOREM 5.3. Let p be a prime of the form 3n + 1, 4p = L? + 27M?
(L,M € Z), and q(d) (q(d) > 3) a prime divisor of L*> —9dM? or —dL?* +
S1M?2.

(i) If k € Z then q(—3k?) is a cubic residue (mod p) if and only if
(k —1)(k? — 1) is a cubic residue (mod q(—3k?)).

(i) If de {—-1,—-2,—-5,—6,—7,—15} then q(d) is a cubic residue (mod p)
if and only if q(d) can be represented by one of the corresponding binary
quadratic forms in Table 5.1.

Proof. Suppose (s(d))? = d (mod q(d)). We first claim that
(5.4) q(d) is a cubic residue (mod p) < s(d) € Cp(q(d)).

If ¢(d) | d then ¢(d) | LM and ¢(d) | s(d). From Proposition 2.1 and Corol-
lary 2.1 we see that s(d) € Cy(q(d)) and that ¢(d) is a cubic residue (mod p).
If g(d)1d then q(d)f LM. (Otherwise, 4p = L2+27M? =0 (mod (¢(d))?).)

Since

L\ aM\*
<3]\/[> = d (modq(d)) or <L> = d (mod ¢(d))
we have
L IM
Now, applying Corollary 2.1 and Proposition 2.2(i) we see that

q(d) is a cubic residue (modp) < SLM € Co(q(d)) & s(d) € Co(g(d)).

This proves the assertion.

Now let us consider (i). Suppose d = —3k? for some k € Z. If k = +1

(mod ¢(d)) then d = —3 (mod ¢(d)) and so 4p = L? +27M? = 0 (mod q(d)).

This implies ¢(d) = p. So ¢(d) is a cubic residue (mod p). If k # +1

(mod ¢(d)), by (5.3) and (5.4) we see that

q(d) is a cubic residue (mod p) < s(d) € Co(g(d))

3k°+3+2-3k [ k+1

3k% -3 k-1

& (k—1)(k* = 1) is a cubic residue (mod ¢(d)).

This proves (i).
(ii) follows from (5.4) and Theorem 5.2.

> is a cubic residue (mod ¢(d))
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REMARK 5.3. When ¢(d) is a prime divisor of L? + 9dM? Federighi and
Roll [FR] conjectured Theorem 5.3(ii) in the cases d = 6,15. Ph. Barkan
[Ba] showed how to prove their conjecture about primes ¢(d) =1 (mod 3).

In 1992, using class field theory Spearman and Williams [SW] proved
the following important result:

(5.5) Suppose p > 3 is a prime and 2® + Az? + Bz +C (A, B,C € Z) is
irreducible over the rational field Q. If the discriminant D = A2B? —4B3 —
4A3C —27C? +18ABC is not a perfect square such that (%) =1,and H(D)
is the form class group of classes of primitive, integral binary quadratic
forms of discriminant D, then the cubic congruence 2% + Az? + Bx +C = 0
(mod p) is solvable if and only if p can be represented by one of the third
(composition) powers of forms in H (D).

From (5.5) we have

LEMMA 5.1. Assume that p > 3 is a prime, m,n € Z, 2| mn, pfmn,
mn # —2,4,64,108,250, m®n/2 — 27 & {k* |k € Z} and ("272T) =1,
Then the cubic congruence x> — e —n = 0 (modp) is solvable if and
only if p can be represented by one of the third powers of primitive integral
binary quadratic forms of discriminant (m3n/2 — 27)n?.

mn
2

3 3
D= —4<—";"> —97(—n)? = <an - 27) n?.

Since D is not a square, by (5.5) it is sufficient to prove that x®— rr—n # 0
for any integer x.

IfteZandt:g—% —n =0, then n = st for some s € Z. Since n £ 0
(mod p) we have st # 0 and so t* — ™ — s = 0. This implies ¢ | 2s. Write
2s = rt. Then ¢* — 254 — %t = 0. Namely, 4t — mrt — 2r = 0. It then
follows that 4t = kr for some k € Z. Observing that r = 2s/t # 0 we find

k(4 —mr) = 8 and hence k € {£1,+2,+4, +8}. Since

ot D (MY (5202

m=me s\ g 32 T3\ Tk k

and k € {#1,£2, 44, £8} we get m®n € {—2,54,0,64,4,108,250}. This
contradicts the assumption. Thus, 23 — %rx —n # 0 for any z € Z. This
completes the proof.

Proof. Clearly the discriminant of 23 — ™2 — n is given by

Now we can give

THEOREM 5.4. If p > 3 is a prime, d € Z,d # 3,d # —3 (modp),d ¢
{k? | k € 7}, (g) = 1,(s(d))?> = d (modp) and 18(d + 3) = m3n with
m,n € Z, then s(d) € Co(p) if and only if p can be represented by one of
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the third powers of primitive integral binary quadratic forms of discriminant

9dn?.
Proof. It follows from Lemma 4.1 that
s(d) € Co(p)

& 2° —9((s(d)* + 3)x — 18((s(d))* + 3) = 0 (modp) is solvable
& 2% —9(d + 3)z — 18(d + 3) = 0 (mod p) is solvable

3
& (my)® — m nmy —m®n =0 (mod p) is solvable

2

N %y —n =0 (modp) is solvable.

Since (m3n/2 — 27)n? = 9dn? and m3n = 18(d + 3) # —2,4, 64,108, 250,
applying Lemma 5.1 we obtain the result.

COROLLARY 5.3. pr is a prime, p = 1 (mod3),k € Z,k # 0,+1

(modp) and 2(k* — 1) = m3n (m,n € Z), then *1 is a cubic Teszdue (mod

p) if and only if p can be represented by one of the third powers of primitive
integral binary quadratic forms of discriminant —27k?*n?

Proof. Suppose d = —3k? and t> = —3 (modp). Clearly, (%) =1,
d # —3 (modp) and (—kt)? = d (modp). By Theorem 2.2(i), —kt € Cy(p)
if and only if £ (= :’;Zi) is a cubic residue (mod p). Also, 18(d + 3) =
18(3 — 3k?) = (—=3m)3n and 9dn? = —27k*n?. So the result follows from
Theorem 5.4.

COROLLARY 5.4. Let p be a prime of the form 3n + 1,4p = L? 4 27TM?
(LM €7Z),d € Z,d g {k*| k€ Z},d # 3,d £ —3 (modp) and 18(d + 3) =
m3n (m,n € Z). If q(d) is a prime divisor of L* —9dM? or —dL* + 81 M?>
satisfying q(d) # 2,3 and q(d)td, then q(d) is a cubic residue (mod p) if
and only if q(d) can be represented by one of the third powers of primitive
integral binary quadratic forms of discriminant 9dn?.

Proof. This is immediate from (5.4) and Theorem 5.4.

6. Applications to Lucas series. Let a and b be two real numbers.
The Lucas sequences {uy,(a,b)} and {v,(a,b)} are defined as follows:

uo(a,b) =0, wuy(a,b) =1,

(6.1)

Un+1(a,b) = buy(a,b) — aup—1(a,b)  (n>1);
(6.2) vo(a,b) =2, wvi(a,b) =

Un41(a,b) = bv,(a,b) — av, — 1(a b) (n>1).
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It is well known that

(6.3) wupy(a,b) = b 1 4a<<b+M>”_ (b_\/myb)

2 2
(b* — 4a # 0)
and that
(6.4) on(a,b) = (“ Vf““) N <b— Vf—‘la) ,

Suppose that p is a prime greater than 3. It is the purpose of this section
to determine u(p_(%s))/g(a, b) (mod p) and v(p_(%s))/g(a, b) (mod p).

THEOREM 6.1. Let p > 3 be a prime, a,b € Z,,ptab, (W) =1
and s?> = —3(b*> — 4a) (modp). Then
0 (modp) if s/b e Co(p),
U -3 a,b =
(107(7))/3< ) i§(—a)_[p/3] (modp) if +£s/b € Cy(p)

S
and

v L (a,b) = 2a~[p/3] (modp) if s/b e Coy(p),
(= GEET T a3 (modp) if s/b & Colp)-

Proof. Set k= —3b/s. For n € Z" it is clear that

1 b+ b2 —4a\" b— Vb2 —4a\"
un(a,b) = — 5 ol G —
9 [(n—=1)/2] n
— bn72r71 b2 —4 2r+1
N Z <27" 4 1) (Vb? = da)

[(n 1)/2 <

[(n 1)/2 n p—2r-1 s(1 4 2w) el 3
r+1 -3 s(14 2w)
_l’_

1+2w )/ (— 3)>n_<b—s(1+2w)/(—3)>n>

2

)bn 2r— 1(b2_4a)r

_|_3

(k+142w)" —(k—1—-2w)") (modp).
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_ (b+s(1 +22w)/(—3)>”+ (b—5(1+22w)/(—3)>”

= (—Z)n((k +142w)"+ (k—1—2w)") (modp).

If p =1 (mod 3), we may write p = A\ with A\ € Z[w] and A\ = 2 (mod 3).
By Lemma 2.2(i),
(k% + 3)(p—1)/3((k —1- Qw)(p—l)/3 + (k+1+ Qw)(p—l)/?»)
_ <(k2 +3)(k—1 —2w)> N ((k2 +3)(k+1 —|—2w)>
3 3

A A

—1
_<k+1+2w> i(k+1+2w> (mod A).
b 3 p 3

Hence, by the above and Fermat’s little theorem we get

(p—1)/3
w(l—w S o
U(P—l)/3(a7 b) = — g <—> (k2 +3) (p=1)/3

s 6
p 3 p 3
0 (mod \) if k € Co(p),
ig(_a)@*l)“ (mod \) if +k € C1(p)

and

V(p—1)/3(a, b)

(r—1)/3 -1
z<—5> w2+3yﬂhnm(<k+1+2W>_+<k+1+2w> )
6 p 3 p 3

_ [ 2a=®=D/3 (mod \) if k € Cy(p),
~ | —a=®7V/3 (mod \) if k € C1(p) U Ca(p).

Since both sides of the above congruences are rational, the congruences
are also true when A is replaced by p (= NA).

If p =2 (mod 3), it follows from Lemma 2.2(ii) that

(k+1+ 2w)(p+1)/3 +(k—1- 2w)(p+1)/3
—1
_ (2 +3)_(p_2)/3<<k+ 1 —l—2w> N (k:+ 1 +2w) > (mod p).
3

p p 3
From this and the above it follows that

(p+1)/3
w(l—w) s o
u(p+1)/3(a,b) = — <_6> (k% 4+ 3)~P=2)/3

X<<k+1+2w><_(k+1+2w>l>
b 3 p 3
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0 (modp) if k € Co(p),

;I:%(—a)_(p_2)/3 (modp) if £k € Ci(p)
and

V(p+1)/3(a,b)

(p+1)/3 1
= (_> i +3)<pz>/3((k+1+2w) . (k+1+2w> )
6 b 3 p 3

_ [2a=®=2/3 (modp) if k € Co(p),
~ | —a=®=2/3 (modp) if ke Ci(p) U Ca(p).
To complete the proof, we note that

36a
D302 — 40 # 0 (mod p)

and k € C;(p) if and only if s/b € C;(p) by Proposition 2.2(i).

COROLLARY 6.1. Let p > 3 be a prime, k € Z, and k(k* +3) £ 0
(modp). Then

K +3=

0 (mod p) if k € Co(p),

L a2 o\-lp/3) .
Ui (=2))/3(3k° +9,6) = %(—Bk —9)~P/3 (modp)  ifk € Ci(p),
1

o (362 = 9) 7% (modp) if k€ Ca(p)

and
2 —[p/3] ;

V=522 (3K +9.6) = {2—(<33kk2++93>—[p/31 o) k8 Coi

COROLLARY 6.2. Let p > 3 be a prime, d € Z,,d # —3 (mod p), (%) =1
and (s(d))? = d (modp). Then s(d) € Co(p) if and only if u(pf(%s))/?)(?)d—i-
9,6) =0 (modp).

Proof. Set k = s(d). Then u,(3k* +9,6) = u,(3d + 9,6) (mod p) by
(6.1). Hence the result follows from Corollary 6.1.

COROLLARY 6.3. Let p > 3 be a prime, a,b € Z,,pfab and (@)

= 1. Then the congruence x> — 3ax — ab = 0 (mod p) is solvable if and only

Proof. Suppose s = —3(b®*—4a) (mod p). It then follows from Theorem
6.1 that s/b € Cy(p) if and only if u(pi(%s))/g(a, b) = 0 (modp). This
together with Theorem 4.1 gives the result.

COROLLARY 6.4. Let p > 3 be a prime, a,b € Z,ptab and (@)
= 1. If —3(b? — 4a) is not a square and x> — 3ax — ab is irreducible over
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Q, then p|u(p_(%3))/3(a,b) if and only if p can be represented by one of
the third powers of primitive integral binary quadratic forms of discriminant
—27a?(b? — 4a).

Proof. Since the discriminant of 2® — 3az — ab is —27a%(b? — 4a) the
result follows from (5.5) and Corollary 6.3.

Let {F,,} and {L,} be defined by

Fo=0, Fi=1, Fp=F,+Fp1 (n>1)
and
Lo=2 Li=1, Lpii=Ln+Ln1 (n>1).
It is well known that {F),} is the Fibonacci sequence and that {L,} is the

Lucas sequence.
From Theorems 5.1 and 6.1 we have

THEOREM 6.2. Let p > 5 be a prime for which (_715) = 1 and hence

p = 22 +15y% or p = 522 +3y? for some x,y € Z according as p = 1 (mod 3)
or p=2 (mod3). Then

0 (mod p) if y =0 (mod 3),
Fo—(z2y3 = (2+3x(];’>))y (modp) ify =z (mod3)

and

2(_;)’) (modp) ify =0 (mod3),

L5208 =
- <p> (modp) ify#0 (mod3).

Proof. Suppose s = (3 — 2(_73))£ Then s?> = —15 (modp). Since

F, =u,(—1,1) and L,, = v,(—1,1), it follows from Theorem 6.1 that

<

0 (mod p) if s € Co(p),
F =
(r—(32))/3 :I:% (modp) if £s € Ci(p)

and that

-3

2(—1)"P/3] = 2( > (modp) if s € Cy(p),

Lip—(=2))3 _3
1) 9 = (22 modp) it s ¢ Calp)
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From Theorem 5.1 we know that

1 ify =0 (mod3),

-3
<s+1+2w) _(sy+y+2yw> ) w ifxz(p)y(mod?)),
3 3

p p -3
w? ifz= —<p>y (mod 3).
Hence, s € Cy(p) if and only if y = 0 (mod 3).
If y # 0 (mod3) then z = £(=2)y (mod3) and so £s € Cy(p) by the

p
above. Since

3 3y _ T _ ;3 T o
s B2 (BreD)y ( P > B(2) 12y M)
we obtain

—% (modp) if p=1 (mod3) and z =y (modp),

F _ (=3 3
=(57))/ T (mod p) if p=2 (mod3) and = = y (modp).
Yy

This completes the proof.

LEMMA 6.1. Let p be a prime greater than 3, a,b € Z,u,, = u,(a,b),v, =
vn(a,b) and ab(b®> — 4a) # 0 (mod p). Then

(a) p]up_(-?s) if and only if (?’(bf“) =1.
(b) p|uy, if and only if ve, = 2a™ (mod p).

Proof. From [D] and [R] we know that

(6.5) Uy _(p2=ta) = 0 (modp), 1w, = <b2 — 4a> (mod p)
Thus,
bu, — aup—1 = b (mod p) if <b2 — 4a) =1,
up+(b2;4a) - ’

1 b (% —4a
a(bup — Upt1) = - (modp) if ( ) =-1

# 0 (mod p).
It then follows that

o (5) = (552) = (240 <

This proves part (a).
Now consider part (b). According to [D] and [R] we have

3

2 n
(6.6) U2n = UpUp, Vop = V; —2a",
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(6.7) vZ — (b — da)u? = 4a™.
Thus,

plu, & v2 =4a™ (modp) & ve, = 2a™ (mod p).
This concludes the proof.

Using Lemma 6.1 and Theorem 6.2 we have

COROLLARY 6.5. Let p be a prime greater than 5. Then

(i) p|F(p_(;3))/3 if and only if p can be represented by x> 4+ 135y or
522 + 27y? according as p =1 (mod3) or p =2 (mod 3).

(ii) 1)|17(107(;az))/6 if and only if p can be represented by x> 4+ 540y? or

P
5% + 108y? according as p =1 (mod 3) or p =2 (mod 3).

Proof. It is well known that (see [D], [SS], [R]) Fy | Finn for m,n € Z7.
Lemma 6.1 we find (*715) =1and sop = A% +15B% or p = 5A% + 3B?
for some A, B € Z. It then follows from Theorem 6.2 that 3| B. Hence
p = 22+ 135y2 or p = 522 + 27y? for some xz,y € Z.

Conversely, if p is represented by 22 + 135y2 or 522 + 27y?, then (_715)
= 1. Applying Theorem 6.2 we find p | F(pi(%s))/g. This proves (i).

Let us consider (ii). pr’F(p—(_TS))/fS then p|Fp_(_T3) and so (_715) =1
by Lemma 6.1. If p is represented by x? 4+ 540y? or 522 + 108y2, we also
have (_715) = 1. Hence, we may assume (_715) =1 and so p = z? + 159
or p = 522 + 3y? for some z,y € Z. It then follows from Lemma 6.1 and
Theorem 6.2 that

_ —(=2))/6
Pl Fp(ztys6 @ Lipo(z2))3 = A=)V (modp)

= -3
& (71)(’)7(73))/6 = () and 3|y
p
oy A% +135B? =1 (mod12) (A,B € Z) if p=1 (mod3),
P=1542+27B2 =5 (mod12) (A,B€ Z) if p=2 (mod3)
& p=A?+135B? or p = 5A% 4+ 27B? with B =0 (mod 2)
S p= 2+ 540y2 orp= 522 + 108y2 for some x,y € Z.
This completes the proof.

REMARK 6.1. In [L3], [L4] E. Lehmer proved Corollary 6.5(i) in the case
p =1 (mod 12). For the criteria for p| Fi,,_1y/4 (if p =1 (mod 4) is a prime)
one may consult [L6], [SS].
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Now we point out similar results for the Pell sequence. The Pell sequence
{P,} and its companion {Q, } are given by

Py=0, Pi=1, Py =2P,+P,, (n>1)
and
Q=2 Q1=2, Qny1=2Qn+Qn-1 (n=>1).
Clearly, P, = u,(—1,2) and Q,, = v,(—1,2).

Using Theorems 6.1 and 5.1 one can similarly prove

THEOREM 6.3. Let p > 3 be a prime such that (_76) = 1 and hence

p = 2%+ 6y? or p = 222+ 3y? for some x,y € Z according as p =1 (mod 3)
or p=2 (mod3). Then

0 (mod p) if y =0 (mod 3),
x

P _3 =
(»—(5>))/3 —_—
(1+3(32)y

(modp) ify ==z (mod3)

and

2(‘5’) (modp) ify =0 (mod3),

Qo528 = 3 |
_<p) (modp) ify#0 (mod3).

REMARK 6.2. For the values of P,_1)/2 (modp) and P,;1)/2 (modp)
one may consult [S1].

COROLLARY 6.6. Let p be a prime greater than 3. Then

(i) p| Py, (=2y/3 if and only if p = 2% + 54y? or p = 22% + 27y? for
P
some integers x and y according as p =1 (mod3) or p =2 (mod 3).
(ii) p| P, (=2y)6 if and only if p = 2% +216y? or p = 82 4 8wy + 29y>
D

for some integers x and y according as p =1 (mod3) or p =2 (mod 3).
The proof of Corollary 6.6 is similar to the proof of Corollary 6.5.

REMARK 6.3. Let p = 1 (mod4) be a prime. From [L4], [S1] we know
that p| Py,_1)/4 if and only if p = 2% 4 32y? for some integers x and y.

Finally, we discuss the Lucas sequence {u,(1,4)}.

THEOREM 6.4. Let p =1 (mod4) be a prime and hence p = z2 +y? for
some integers x and y. Then
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Up—(=2y)/6(1:4)

_ o-—(52)/6 _
=2 Up-(52))/3(=22)

{ 0 (mod p) if 9|zy(z? —y?),

1/2
~5 <> z (modp) if = =2y,—3y,4y (mod9) or y = 3z (mod9)
b)Yy

and

(1,4) = 2—(10—(_73))/61)([) (—2,2)

Yp—(32))/6 —(32))/3

2(?) (modp) if 9]ay(z® — y?),

_<_p6) (modp) if 9fzy(z? — y?).

Proof. By (6.3) and (6.4) we have

2 (1,4) = 2\1/3((4 +2V3)" — (4 —2V3)")
= 2\1/3((1 +V3)7 — (1= V3)®") = uzn(—2,2)
and
20, (1,4) = (4 +2V3)" + (4 — 2V/3)"
= (14+V3)" + (1 = V3)* = v3,(—2,2).
Since 3%.2 = —3 (mod p) it follows from Proposition 2.2(i) that x/y € C;(p)

vy
if and only if 3x/y € C;(p). Thus, from (6x/y)? = —3(22 — 4(—2)) (mod p)
and Theorem 6.1 we get

0 (modp) if z/y € Co(p),
—3 —2 2 =
Up-(52/3(=2:2) {ié/ 27/ (mod p) if +x/y € Ci(p)
X

and

2. (=2)~[/3] (mod if x Co(p),
e iptan= (R Vsl

From the proof of Theorem 5.2 we see that
x/y € Co(p) & 9| xy(x? — y?)
and that
xz/y € Ci(p) & x =2y, —3y,4y (mod9) or y = 3z (mod9).
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Now, combining the above with the facts that
(—1)lP/3) = <—;’) and 2~ P~ (G/6.9-/3] _ 9—(-1)/2 _ (;) (mod p)

yields the desired result.

COROLLARY 6.7. Let p > 3 be a prime. Then p|u(p7(%s))/6(1,4) (or
p\u(pi(%s))/?)(—Q,Z)) if and only if p can be represented by x* + 81y? or
222 + 2xy + 41y? according as p =1 (mod 3) or p =2 (mod 3).

REMARK 6.4. Let p > 3 be a prime. Using the method in the proof
of Corollary 6.5(ii) one can similarly prove that p|u,_ =) ,4(—2,2) if and

only if p can be represented by 1622 + 81y?, 22 + 129632, 822 + 8zy + 41y>
or 3222 — 8xy + 413>
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