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ABSTRACT. Let k,m € Z, m > 2, 0 < k < 2™ and 2 t k. In the paper we give a
general primality criterion for numbers of the form k - 2™ 4 1, which can be viewed as a
generalization of the Lucas-Lehmer test for Mersenne primes. In particular, for £ = 3,9
we obtain explicit primality tests, which are simpler than current known results. We also
give a new primality test for Fermat numbers and criteria for 9- 24713 41, 3.220n+6 41
or 3-2367%6 £ 1 to be twin primes.

1. Introduction.

For nonnegative integers n, the numbers F,, = 22" +1 are called the Fermat numbers.
In 1878 Pepin showed that F,(n > 1) is prime if and only if 3/»~1/2 = —1 (mod F},).
For primes p, let M, = 2P — 1. The famous Lucas-Lehmer test states that M, is a
Mersenne prime if and only if M, | S,_2, where {S,,} is given by Sy = 4 and Si4+1 =
S2—-2(k=0,1,2,...).

n [1], [2], [6] and [9], W. Borho, W. Bosma, H. Riesel and H.C. Williams extended
the above two tests to numbers of the form k-2™ + 1, where 0 < k < 2™ and k is odd.
For example, we have the following known results.

Theorem 1.1 Let p =k 2" + 1 withm > 2, 0 <k <2™, 2tk and D € Z with
the Jacobi symbol (%) — —1. Then p is prime if and only if D®P=1/2 = —1 (mod p).
In particular, if 31 £ we may take D = 3.

Let {S.(z)} be given by Sp(z) = z and Syy1(z) = (Sk(z))?> — 2 (k > 0). Then we
have

Theorem 1.2 Let p=£-2" —1 withm >3, 0 < k < 2™ and k = £1 (mod 6), and
let © = (24 v/3)% + (2 — /3)*. Then p is prime if and only if p | S,,_2(z).

Here we point out that the x in Theorem 1.2 is also given by z = Z(k /2
(k T)(_1)r4k 27"'

T
In this paper we prove the following main result.

(1.1) Form >2let p=Fk-2" +1 with 0 < k < 2™ and k odd. If b is an integer such
that (Qbe) (Qpb) —1, then pis prime if and only if p | Sy,— Q(Z(k /2 = (k_r)(—l)Tbk_%).

_k

k—r

As applications of (1.1) we have many new simple primality criteria for numbers of

the form k- 2™ £+ 1(k = 1,3,9). Here are some typical results.
(1.2) For n > 1 the Fermat number F,, is prime if and only if F,, | San_2(5).
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(1.3) Let m > 3 be a positive integer. If m =0 (mod 2) or m = 5,11 (mod 12), then
9.2" — 1 is composite. If m =1,3,7,9 (mod 12), then 9-2" — 1 is prime if and only if
9.2 —1|8S,—2(z), where

5778 if m=1,9 (mod 12),
x =< 1330670 if m = 3 (mod 12),
2186871698 if m = 7 (mod 12).
(1.4) Let n be a nonnegative integer. Then 9 - 247+3 — 1 and 9 - 2473 4+ 1 are twin

primes if and only if (9 - 24" %3)2 — 1| S,,,.1(32672 - 1067459581).

Throughout this paper we use the following notations: Z—the set of integers, N—the

set of positive integers, (%) —the Jacobi symbol, (m, n)—the greatest common divisor of

m and n, S, (x)— the sequence defined by Sy(z) = x and Sk41(x) = (Sk(z))?—2(k > 0).

2. Basic Lemmas.
For P, € Z the Lucas sequences {U,,(P,Q)} and {V,,(P,Q)} are defined by

Up(P,Q) =0, U1(P,Q) =1, Unta(P,Q) = PU(P,Q) = QUn1(P,Q) (n = 1)
and

VO(PJ Q) = 27 VI(P7Q) = P7 Vn+1(P7 Q) = PVn(P7 Q) - Qvn—l(P; Q) (77, > 1)
Let D = P? — 4(Q). It is well known that

R e R G B (LI BT
and
()= (T) 4 (P 22
Set U,, = U, (P, Q) and V,, = V,,(P, Q). From the above one can easily check that
Vi, = PU, — 2QU,_1 = 2Up 4, — PU,. (2.3)

From [5] we also have
Usp = Up Vi, Vo = V72 —2Q" and V? — DU? = 4Q". (2.4)
If p is an odd prime not dividing @, it is well known that ([5])

U, (2)(P.Q) =0 (mod p) and U(P.Q) = (%) (mod p). (2.5)

Let p be an odd prime such that (%) =1 and p t D. D. H. Lehmer proved the
following stronger congruence (see [4] or [9, p.85]):

U(p_(%))/Q(P, Q) =0 (mod p). (2.6)

Definition 2.1 Let P,Q € Z, and p be an odd prime such that p { Q). Define r,(P, Q)
to be the smallest positive integer n such that p | U, (P, Q).
From [5, IV.17] or [9, p.87] we know that p | Uy, (P, @) if and only if r,(P, Q) | m.
This can also be deduced from [9, (4.2.59), p.81]. Using (2.5) and (2.6) we have
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Lemma 2.1. Let P and Q be integers, D = P?>—4Q), and let p be an odd prime such that

(D
p1Q. Then ry(P,Q) | p— (%). Moreover, z'f(%) =1 andp{ D, then r,(P,Q) | #.

From (2.4) and induction we have
Lemma 2.2. Let P,Q € Z, Q #0 and n € N. Then S,(L%5) = Q2" "Vau (P, Q).

Lemma 2.3. Let P,Q € Z and n € N. Let p be an odd prime such that p{ Q(P? —4Q)
and S, (P/+/Q) =0 (mod p). Then p = (PQ;%Q) (mod 2"+(3+(%))/2)'

Proof. In view of Lemma 2.2 we have p | Van (P, Q) and so p | Usn+1 (P, Q) by (2.4).
From (2.4) we see that p { Uz (P,Q). Thus, r,(P,Q) = 2""'. This together with
Lemma 2.1 gives the result.

Lemma 2.4. Let P,QQ € Z and n € N, and let p > 1 be an odd integer such that
(p, Q(P? —4Q)) =1 and S,,(P/v/Q) =0 (mod p). Let a« =n+2 or n+ 1 according as
Q is a square or not. If p < (2% — 1)2, then p is prime.

Proof. If p is composite, then p has a prime divisor ¢ such that ¢ < ,/p. Since ¢ | p
and S, (P/+/Q) = 0 (mod p) we see that S, (P/+/Q) = 0 (mod ¢). It follows from
Lemma 2.3 that ¢ = (PZTTZIQ) (mod 2”+(3+(%))/2) and so ¢ > ont(3+()/2 _ g, Thus,
p>q® > (2"+(3+(%))/2 — 1)2. This contradicts the assumption. So p must be prime.

Let [z] denote the greatest integer not exceeding z. Using induction one can easily
prove

Lemma 2.5 ([9, (4.2.36)]). Let P,Q € Z and n € N. Then

vn<P,@>=[nf . (n_T>P"‘2T(—Q)7"-

n—r r
r=0

3. The general primality test for numbers of the form £ -2™ + 1.

Lemma 3.1. Let P,Q € Z and D = P?> —4Q. Let p be an odd prime such that p{ QD.

Suppose (%) =1 and so ¢ = Q (mod p) for some integer c. Then

p )
0V, (P.Q) =2("T2) e (mod p),

2

(i) Ve (P.Q)=P(

2

P+2c\ (51
* c)c > (mod p).

Proof. For b, c € 7Z it is clear that

(b:l:\/bQ—4bc>2_b. b—2c=++/(b—2c)? — 4c?

2 2
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Thus, applying (2.2) we see that

Van (b, be) = bV, (b — 2¢, ¢?). (3.1)
Hence, if p is an odd prime such that p t b2 — 4bc and & = (%), by [9, (4.3.4)] we
obtain

p—eE p—e 1l—e p— 1l—e b 1l—e
Vie (b—2c,c®) =b""2 V,_.(bbc) =b" "= 2(bc) 2 = 2T = 2(5)0T (mod p).

Now suppose b = P + 2c and ¢ = Q (mod p). Then b* — 4bc = P? — 4¢? =
P? —4Q (mod p) and so € = (%). From the above we see that

P+ 2c

Vpra(P,Q) = Vprs(b— 2¢,c?) = 2( ’

)617;6 (mod p).

This proves (i).
From (2.1) and (2.2) we see that

1
50122

D

Vipr(2))2(P Q) = {P‘/(M%))/?(P’Q) + (E

) DU—(2))2(P.Q) }-

Thus, by (i) and (2.6) we obtain

1 P +2c\ =) P+2cy\ ()
-2P<:)c 2 EP( + C)c 2 (mod p).

V(er(%))/Q(P’ Q)= 2Q(1_(g))/2

This proves (ii) and hence the proof is complete.

Remark 3.1 Lemma 3.1 can also be easily deduced from [7, Lemma 3.4] or [8, Lemma,
3.1].

Lemma 3.2. Let P,Q € Z and p be an odd prime with p { Q(P? — 4Q). Suppose
(%) =1 and so ¢ = Q (mod p) for some integer c. Then

VV(%) (P,Q) =0 (mod p) if and only if (M) = (M> = —1.

. p p

Proof. From Lemma 3.1 we have

-(=hH

2<H>cl2p (mod p) if (M) =1,

P P
VP*(%) (P’ Q) = 1+(;1) 2
2 P(P;;QC)c_f (mod p) if (—4Q;P ) =-1
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Thus, applying (2.4) we obtain

V2 L (PQ) =V, (P i N X T
p—(%)( ,Q) p—(71>( Q) ( Q) + 2c »

e () modp) i (152 =1,
TP (PE) 4 9e()) (mod p) i (A2E0) = 1.

Since pt P? — 4Q and ¢? = Q (mod p) we see that P(%) # —2c(3) (mod p). Hence,

R e e

PN (ZQ—;)-CP> _ <2Q;CP> _ 1

This proves the lemma.

Lemma 3.3. Suppose P,Q,k,n € Z with k,n > 0. Then
Vin(P, Q) = Vi (Vi (P, Q), Q).
Proof. Set V;,, = V,,,(P, Q). From [9, (4.2.8)] we know that
Vierw = ViV, —Q"V,_y, and so Vinin) = ViVim — Q" Vim—1).-

Now we prove the result by induction on n. Clearly the result is true for n = 0, 1.
Suppose the result holds for 1 < n < m. By the above and the inductive hypothesis we
have

Vk(m+1) = Vka(Vk7Qk) Qk Vin— 1(Vk‘7Qk) - m+1(Vk7Q )
So the result holds for n = m + 1. Hence, the lemma is proved by induction.

Theorem 3.1. Form € {2,3,4,...} let p=Fk-2" +1 with 0 < k < 2™ and k odd.
If bc € Z, (p,c) =1 and (QCTTI’) = (2C by = —(5), then p is prime if and only if

p| Sm_2(x), where x = c ¥V, (b, c?) = Z(k /2 k (k_r)(—l)r(b/c)k_m.

T

Proof. Set U, = U,(b,c?) and V,, = V,,(b, ) From Lemmas 3.3, 2.2 and 2.5 we
have

Vio—(=tyy/a = Vieam-2 = Vam-2 (Vi ) = S o (Vif k) = S, a(w).

If p is prime, it follows from Lemma 3.2 that p | V(,, (-1, /4. S0 Sp—2(x) = 0 (mod p).

Now suppose Sy, 2(x) = Sp_2(Vi/c*¥) = 0 (mod p). From (2.4) we have V2 —

(b% — 4cA)U2 = 4c¢*™. Thus, (Un, Vi) | 4¢®™. As (p,2¢) = 1 and p | Vj.gm—2 we find

(p, Ug.gm-2) = 1. It is well known that (see [5] and [9]) U, | U, for any positive integers
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r and n. Thus, Uy | Ug.gm-2 and so (p, Uy) = 1. Hence, (p, V;Z —4c**) = 1 by (2.4). Set
P=V,,Q=c®andn=m—2. If0 < k < 2™—2, then clearly p = k-2m+1 < (2™ —1)2.
By Lemma 2.4, p is prime. If p = (2" — 1)2™ 41 is composite, by Lemma 2.3 we know
that any prime divisor ¢ of p satisfying ¢ = +1 (mod 2™). It is easy to check that
p # (2™ £ 1)%. Thus p > (2™ — 1)(2™ + 1). This is impossible. So p is prime. This
completes the proof.

Taking b = 4 and ¢ = 1 in Theorem 3.1 we obtain the Lucas-Lehmer test for Mersenne
primes and Theorem 1.2.

From Theorem 3.1 we also have the following criterion for Fermat primes, which is
similar to the Lucas-Lehmer test.

Corollary 3.1. Forn € N the Fermat number F,, is prime if and only if F,, | Son_2(5).

Proof. Since F,, =2 (mod 3) and F,, = 3,5 (mod 7) we see that
-3 F, T F.
(F_n) = (?) =—-1 and (F_n) = (7) =-L
Thus putting p = F,,, k=1,b =25 and ¢ =1 in Theorem 3.1 we obtain the result.
Remark 3.2 In 1960 K. Inkeri[3] showed that the Fermat number F,, (n > 2) is prime
if and only if F, | San_2(8).

4. The primality criterion for numbers of the form 9-2™ + 1.

In the section we use Theorem 3.1 to obtain explicit primality criterion for numbers
of the form 9 - 2™ £ 1.

Theorem 4.1. Let m > 3 be a positive integer. If m = 0 (mod 2) orm = 5,11 (mod 12),
then 9 -2™ — 1 is composite. If m =1,3,7,9 (mod 12), then 9-2" — 1 is prime if and
only if 9-2™ — 1| Sp—2(x), where
5778 ifm=1,9 (mod 12),
x =< 1330670 if m =3 (mod 12),
2186871698 if m =7 (mod 12).

Proof. Clearly the result is true for m = 3. Now assume m > 4. If m = 2n for some
integer n, then 9-2™ —1 = (3-2" +1)(3-2" — 1) and so 9-2" — 1 is composite. If
m = 5,11 (mod 12), then 7| 9-2™ — 1 since 22 =1 (mod 7). If m =1,3,7,9 (mod 12),
once setting

3 ifm=1,9 (mod 12),
b=4¢ 5 if m=3(mod12),
11 if m =7 (mod 12)

2+b 2—b
7 J=(——)=-1.
(771 -7 3)
From Lemma 2.5 we know that
Vo(b,1) = b7 — 9b7 + 27b° — 306% + 9b = (b — 3b)((b° — 3b)? — 3) = .

Applying Theorem 3.1 in the case ¢ = 1 we get the result.
In a similar way, applying Theorem 3.1 we have
6
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Theorem 4.2. Let m > 3 be a positive integer. If m =0 (mod 4), then 5]9-2™ + 1.
Ifm =10 (mod 12), then 13 | 9-2™ + 1. If m = 5 (mod 8), then 17| 9-2™ + 1. If
m # 0 (mod 4), m # 10 (mod 12) and m # 5 (mod 8), then 9-2™ + 1 is prime if and
only if 9-2™ + 1| Sy—2(x), where x is given by Table 4.1.

Table 4.1

m b |2z ="Vy(b1) = (b3—3b)((b>—3b)? —3)
m=1,9 (mod 24) 37 50542 - 2554493761
m =2 (mod 12) 28 21868 - 478209421
m = 3,6,7 (mod 12) 12 1692 - 2862861
m = 11 (mod 12) 32 32672 - 1067459581
m = 17,65 (mod 72) | 150 3374550 - (3374550% — 3)
m = 41 (mod 72) 2167 | (2167% — 6501) - ((2167% — 6501)2 — 3)

Remark 4.1 Form >4 let p=9-2™ 4+ 1 and

5 if m=0,2,3 (mod 4),

7 ifm=1,9,13,21 (mod 24),
17 if m =5 (mod 24),

241 if m = 17 (mod 24).

D =

In [2] W. Bosma showed that p is prime if and only if D®~1)/2 = —1 (mod p).

Theorem 4.3. Let n be a positive integer. Then 9-23"13 —1 and 9-24"13 +1 are twin
primes if and only if (9-24"3)2 — 1] S4,,1(32672 - 1067459581).

Proof. Let b =32. Then 2+b =217 and 2—b = —2-3-5. Since (goresgy) =

9213 E]
(53mosy) = 1 and 2* = —1 (mod 17) we find

( 2+0 >:< 17 >:(9-24"+3i1>:(4(—1)”i1>:_1,

9.24n+3 41 9.24n+3 41 17 17

— _ . 94n+3
( 2—-b >:< 5 >:i(92 il):i<72i1>:—1.
9.24n+3 41 9.24n+3 41 5 5

Thus, applying Theorem 3.1 we see that 9-2%"3 41 is prime if and only if 9247341 |
Sins1(Vo(b,1)). To see the result, we note that (9-24"+3 41 9.247+3 _1) = 1 and that

Vo(b, 1) = b7 — 9b7 4 27b° — 300 + 9b = (b® — 3b)((b> — 3b)* — 3) = 32672 - 1067459581.

Remark 4.2 If 9-2"™ + 1(m > 1) are twin primes, then m = 3 (mod 4). If m =
11 (mod 12), then 7 | 9-2™ —1 and so 9-2™+1 cannot be twin primes. If m = 3 (mod 12),
by taking b = 12 and ¢ = 1 in Theorem 3.1 we can prove that 9-2™ —1 and 9-2™ 41 are
twin primes if and only if (9-2™)% — 1| S,,_2(4843960812). It is known that 9-2™ — 1
and 9-2™ + 1 are twin primes when m = 1, 3,7,43,63,211. Do there exist only finitely
many such twin primes?
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5. The primality criterion for numbers of the form 3 -2 £ 1.

Theorem 5.1. Let m > 3 be a positive integer such that m Z —2 (mod 10080). If
m =1 (mod 4), m = 46 (mod 72) or m = 862 (mod 1440), then 3-2™ —1 is composite.
Ifm # 1 (mod 4), m # 46 (mod 72) and m # 862 (mod 1440), then 3-2™ —1 is prime
if and only if 3-2™ — 1| Sp—2(x), where x is given by Table 5.1.

Table 5.1

m b |x=V3(b1)=5b%-3b
m = 0,3 (mod 4) 3 18
m = 2,6 (mod 12) 5 110
m = 10 (mod 24) 15 3330
m = 22 (mod 72) 17 4862
m =70 (mod 144) 192 7077312
m = 142 (mod 288) 65535 655353 — 3 - 65535
m = 286, 574 (mod 1440) 9 702
m = 1150 (mod 1440) 29 24302
m = 1438, 2878,4318,7198 (mod 10080) 27 19602
m = 5758 (mod 10080) a1 68798
m = 8638 (mod 10080) 125 1952750

Proof. If m =1 (mod 4), then 5 | 3-:2™ —1; if m = 46 (mod 72), then 37 | 3-2™ —1; if
m = 862 (mod 1440), then 11 | 3-2™ —1. Now suppose m # 1 (mod 4), m # 46 (mod 72)
and m # 862 (mod 1440). Let b be given by Table 5.1. One can easily check that

(1) = (ren) =

Thus the result follows from Theorem 3.1 by taking c=1and p=3-2™ — 1.
Remark 5.1 If m € Nand m = 0,2 (mod 3), in 1993 W. Bosma|2]| showed that 3-2™ —1
is prime if and only if 3-2™ — 1| S,,_2(10054 - 23™).

In a similar way, using Theorem 3.1 we can prove

Theorem 5.2. Let m > 3 be a positive integer such that 180 t m. If m = 1 (mod 3),
then 7 3-2™ +1; if m = 3 (mod 4), then 5 | 3-2™ + 1; if m = 2 (mod 12), then
13 [ 3-27 +1; if m = 144 (mod 180), then 61 | 3-2™ + 1. Ifm % 1 (mod 3),
m # 3 (mod 4), m # 2 (mod 12) and m # 144 (mod 180), then 3 - 2™ + 1 is prime if
and only if 3-2™ + 1| S,,—2(x), where x is given by Table 5.2.

Table 5.2
m b |z="V3(b1)=0°—3b

m =5 (mod 12) 12 1692

m =6 (mod 12) 28 21868

m =8 (mod 12) 37 50542

m =9 (mod 12) 32 32672

m = 12,24 (mod 36) | 150 3374550

m = 36 (mod 180) 207 8869122

m =72 (mod 180) 64 261952

m = 108 (mod 180) 5282 5282 - 27899521




Theorem 5.3. Let n be a nonnegative integer. Then 3 -220"+6 — 1 and 3. 2207+6 1
are twin primes if and only if (3 - 220776)2 — 1| S90,14(73962).

Proof. Let b = 42. Then 2+ b = 44 and 2 — b = —40. Since (32203w> =1 and
25 = —1 (mod 11) we find

( 240 )_( 11 )_i(3-220”+6i1)_i<—6i1)_ .
3.220n+6 41/ \3.220n+6 11/ 11 a 11 7
2—-b 5 3. 22046 4 q 12+1
(regmmr) = =(grmensr) == 5 ) =+(75) =1

3.9220n+6 4 3.9220n+6 4 5 5

Thus, applying Theorem 3.1 in the case b = 42 and ¢ = 1 we see that 3. 2207+6 41

is prime if and only if 3 - 220776 £ 1 | Sy4,14(V3(b,1)). To see the result, we note that

(3.220n%6 4 1/3.220nt6 _ 1) = 1 and that V3(b,1) = b3 — 3b = 423 — 3 - 42 = 73962.
In the same way, putting b = 17 and ¢ = 1 in Theorem 3.1 we get

Theorem 5.4. Let n be a nonnegative integer. Then 3 -236n+6 1 and 3. 236n+6 11
are twin primes if and only if (3 -235776)2 — 1| S36,,14(4862).
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