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Abstract. Let p ≡ 1 (mod 4) be a prime. Let a, b ∈ Z with p - a(a2 + b2).

In the paper we mainly determine (
b+
√

a2+b2

2
)

p−1
2 (mod p) by assuming

p = c2 + d2 or p = Ax2 + 2Bxy + Cy2 with AC − B2 = a2 + b2. As an

application we obtain simple criteria for εD to be a quadratic residue (mod p),
where D > 1 is a squarefree integer such that D is a quadratic residue of

p, εD is the fundamental unit of the quadratic field Q(
√

D) with negative
norm. We also establish the congruences for U(p±1)/2 (mod p) and obtain a

general criterion for p | U(p−1)/4, where {Un} is the Lucas sequence defined

by U0 = 0, U1 = 1 and Un+1 = bUn + k2Un−1 (n ≥ 1).
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1. Introduction.
Let Z be the set of integers, i =

√−1 and Z[i] = {a + bi | a, b ∈ Z}. For
π = a + bi ∈ Z[i] the norm of π is given by Nπ = ππ̄ = a2 + b2, where π̄
means the complex conjugate of π. If 2 | b and a+b ≡ 1 (mod 4), we say that
π is primary. If π or −π is primary in Z[i], it is known that (see [IR, p. 121])
π = ±π1 · · ·πr, where π1, . . . , πr are primary irreducibles. For α ∈ Z[i] the
quartic Jacobi symbol

(
α
π

)
4

is defined by

(α

π

)
4

=
( α

π1

)
4
· · ·

( α

πr

)
4
,

where
(

α
πs

)
4

is the quartic residue character of α modulo πs given by

( α

πs

)
4

=
{

0 if πs | α,

ir if α(Nπs−1)/4 ≡ ir (mod πs).

The author was supported by Natural Sciences Foundation of Jiangsu Educational

Office in China (07KJB110009).
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If a + bi is primary in Z[i], it is known that

( i

a + bi

)
4

= i
a2+b2−1

4 = i
1−a
2 and

( 1 + i

a + bi

)
4

= i
a−b−b2−1

4 .

If a + bi and c + di are relatively prime primary elements of Z[i], then we
have the following general law of biquadratic reciprocity:

(a + bi

c + di

)
4

= (−1)
a−1
2 · c−1

2

(c + di

a + bi

)
4
.

For more properties of the quartic Jacobi symbol one may consult [IR, pp.
122-123, 311] and [Su6, (2.1)-(2.8)].

For any odd number m > 1 and a ∈ Z let ( a
m ) be the (quadratic) Jacobi

symbol. For our convenience we also define ( a
−m ) = ( a

m ) and
(

a
1

)
=

(
a
−1

)
=

1. Then for any two odd numbers m and n with m,n 6= ±1 we have the
following general quadratic reciprocity law: (m

n ) = (−1)
m−1

2 ·n−1
2 ( n

m ). If
m > 1 is odd, a, b, x ∈ Z, ax ≡ b (mod m) and a is coprime to m, we define( b/a

m

)
=

(
x
m

)
. Hence

( b/a
m

)
=

(
a
m

)(
b
m

)
.

Let D > 1 be a squarefree integer, and εD = (m + n
√

D)/2 be the fun-
damental unit of the quadratic field Q(

√
D) (Q is the set of rational num-

bers). Suppose that p ≡ 1 (mod 4) is a prime such that (D
p ) = 1. As

m+n
√

D
2 · m−n

√
D

2 = m2−Dn2

4 = ±1, we may introduce the Legendre sym-
bol

(
εD

p

)
. When the norm N(εD) = (m2 − Dn2)/4 = −1, many mathe-

maticians tried to characterize those primes p for which εD is a quadratic
residue (mod p) (that is

(
εD

p

)
= 1). In 1908, Vandiver [V] found that

ε5 = (1 +
√

5)/2 is a quadratic residue of a prime p ≡ 1, 9 (mod 20) if and
only if p = x2 + 20y2 for some x, y ∈ Z. In 1942 Aigner and Reichardt [AR]
proved that ε2 = 1 +

√
2 is a quadratic residue of a prime p ≡ 1 (mod 8) if

and only if p = x2 + 32y2(x, y ∈ Z). In 1969, Barrucand and Cohn [BC] re-
discovered this result. Later, Brandler [B] showed that for q = 13, 37 the unit
εq is a quadratic residue of a prime p (p ≡ 1 (mod 4), ( q

p ) = 1) if and only
if p = x2 + 4qy2(x, y ∈ Z). For more special results along this line one may
consult [BLW, LW1, LW2, Wi4], [Su6, Remark 6.1] and [Lem2, pp.168-180].

Let p and q be distinct primes such that p ≡ q ≡ 1 (mod 4) and
(

q
p

)
=(

p
q

)
= 1. Define

[q

p

]
4

=
{

1 if q is a quartic residue (mod p),
−1 if q is a quartic nonresidue (mod p).

According to [Lem2], in 1839 Schönemann [Sc] showed that
(εp

q

)
=

[q

p

]
4

[p

q

]
4

=
(εq

p

)
.
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This was rediscovered by Scholz [S] in 1934, and it is now called Scholz’s law.
In [Su1] the author proved

( εp

q

)
=

( εq

p

)
using only the quadratic reciprocity

law. If p = a2+b2 and q = c2+d2 with a, b, c, d ∈ Z and 2 - ac, in 1969 Burde
[Bu] established the following Burde’s rational quartic reciprocity law:

[q

p

]
4

[p

q

]
4

= (−1)
q−1
4

(ad− bc

q

)
.

In 1985, Williams, Hardy and Friesen [WHF] found a general rational
quartic reciprocity law including Scholz’s law and Burde’s law. See also
[Lem1,Lem2] and [E1].

Let D > 1 be a squarefree integer. There are a great many papers dis-
cussing

(
εD

p

)
. The problem of determining the value of

(
εD

p

)
is concerned

with quartic residues, rational quartic reciprocity laws, class numbers and
binary quadratic forms, and many mathematicians discussed the problem by
using class field theory. For more references, see for example, [Bro1, Bro2,
D, FK, KWY, K, Le1-Le5, LW3, W, Wi1-Wi3, Wi5].

In [Su6], the author proved the following general result (see [Su6, Theorem
6.2 and Remark 6.1]).

Theorem 1.1. Suppose that p ≡ 1 (mod 4) is a prime, D, m, n ∈ Z, m2 −
Dn2 = −4 and

(
D
p

)
= 1. Then (m+n

√
D)/2 is a quadratic residue (mod p)

if and only if p is represented by a primitive, integral quadratic form ax2 +
2bxy+cy2 of discriminant −4k2D with the condition that 2 - a and

(
bn−kmi

a

)
4

=
1, where

k =





1 if D ≡ 4 (mod 8),
2 if 2 - D or 8 | D,
4 if D ≡ 2 (mod 4).

Let p ≡ 1 (mod 4) be a prime and a, b ∈ Z with p - a(a2 + b2). If s2 ≡
a2 + b2 (mod p) with s ∈ Z, then clearly ( b+s

p )( b−s
p ) = ( b2−s2

p ) = (−a2

p ) = 1.
Thus we may define

( (b +
√

a2 + b2)/2
p

)
=

( (b + s)/2
p

)
=

(2(b + s)
p

)
=

(2(b− s)
p

)
.

In Section 2 we give general congruences for
(

b+
√

a2+b2

2

) p−1
2 (mod p) and

deduce general criteria for ( εD

p ) = 1. For example, if D > 1 is odd, εD =
(m + n

√
D)/2 and N(εD) = −1, and if p = c2 + d2 with c, d ∈ Z, 2 - c, p - n

and
(

D
p

)
= 1, then

(εD

p

)
=

( (m +
√

m2 + 22)/2
p

)
=

{
(mc+2d

D ) if 2 - m,

( c−m
2 d

D ) if 2 | m.
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To our surprise, the result is very simple and it can be easily deduced from
the law of quadratic reciprocity. If 4 - a2 + b2 and (a2+b2

p ) = 1, in Section

4 we determine
( (b+

√
a2+b2)/2

p

)
by expressing p in terms of binary quadratic

forms of discriminant −4(a2 + b2). For example, if p = x2 + (a2 + b2)y2 for
some integers x and y, we have

( (b +
√

a2 + b2)/2
p

)
=





(−1)
a
2 y if 2 | a and 2 - b,

(−1)
p−1
4 + b

2 y if 2 - a and 2 | b,
(−1)

y
2 if 2 - ab.

For a, b ∈ Z the Lucas sequences {Un(b, a)} and {Vn(b, a)} are defined by

(1.1) U0(b, a) = 0, U1(b, a) = 1, Un+1(b, a) = bUn(b, a)−aUn−1(b, a) (n ≥ 1)

and

(1.2) V0(b, a) = 2, V1(b, a) = b, Vn+1(b, a) = bVn(b, a)− aVn−1(b, a) (n ≥ 1).

Let ∆ = b2 − 4a. It is well known that

(1.3) Un(b, a) =

{
1√
∆

{(
b+
√

∆
2

)n − (
b−√∆

2

)n}
if ∆ 6= 0,

n( b
2 )n−1 if ∆ = 0

and

(1.4) Vn(b, a) =
(b +

√
∆

2

)n

+
(b−√∆

2

)n

.

Suppose p ≡ 1 (mod 4) is a prime, b, k ∈ Z and p - k(b2 + 4k2). Using the
results in Sections 2 and 4, in Sections 3 and 5 we determine U p−1

2
(b,−k2)

and V p−1
2

(b,−k2) modulo p. As an application, we give general criteria for
p | U p−1

4
(b,−k2).

In addition to the above notation, throughout this paper we let N denote
the set of positive integers. For a, b ∈ Z (not both zero) let (a, b) be the
greatest common divisor of a and b. For a given prime p and a nonzero
integer n we use ordpn to denote the nonnegative integer α such that pα | n
but pα+1 - n (i.e. pα ‖ n).

2. Congruences for
(

b+
√

a2+b2

2

) p−1
2 (mod p) when p = c2 + d2.

For two integers a and b, it is easily seen that (see [Su1])

(2.1) (b + ai)
b +

√
a2 + b2

2
=

(b + ai +
√

a2 + b2

2

)2

.

This is the starting point for our goal.
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Theorem 2.1. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 - c. Suppose a, b ∈ Z with (a, b) = 1 and p - a(a2 + b2).

(i) If
(

a2+b2

p

)
= 1, then

( (b +
√

a2 + b2)/2
p

)
=





(
bc+ad
a2+b2

)
if 2 | a,

(−1)
d
2
(

ac−bd
a2+b2

)
if 2 | b,

(−1)
(bc+ad)2−1

8
(

bc+ad
(a2+b2)/2

)
if 2 - ab.

(ii) If
(

a2+b2

p

)
= −1, then

(b +
√

a2 + b2

2

) p−1
2

≡





(
bc+ad
a2+b2

)
c
d · b−√a2+b2

a (mod p) if 2 | a,
(−1)

d
2
(

ac−bd
a2+b2

)
c
d · b−√a2+b2

a (mod p) if 2 | b,
(−1)

(bc+ad)2−1
8

(
bc+ad

(a2+b2)/2

)
c
d · b−√a2+b2

a (mod p) if 2 - ab.

Proof. We first evaluate the Legendre symbol ( b+ad/c
p ). As (b + ad/c)(b−

ad/c) ≡ b2 + a2 6≡ 0 (mod p) we have ( b+ad/c
p ) 6= 0. It is known that

( c
p ) = (p

c ) = ( c2+d2

c ) = (d2

c ) = 1 and (d
p ) = (−1)

p−1
4 = (−1)

d
2 . Thus,

(b + ad/c

p

)
=

(bc + ad

p

)
=

(d

p

)(a− bd/c

p

)
= (−1)

d
2

(ac− bd

p

)
.

Now we assert that (a2 + b2, bc + ad) = (a2 + b2, ac− bd) = 1. If q is a prime
such that q | (a2 + b2, bc + ad), we have −a2c2 ≡ b2c2 ≡ a2d2 (mod q) and so
q | a2p. As p - a2 + b2 and q | a2 + b2 we see that q 6= p. Thus q | a and so
q | b. This contradicts the condition (a, b) = 1. Hence (a2 + b2, bc + ad) = 1.
Similarly we have (a2 + b2, ac− bd) = 1. So the assertion is true.

If 2 | a, then 2 - b. By the above we have (a2 + b2, bc + ad) = 1 and so

(b + ad/c

p

)
=

(bc + ad

p

)
=

( p

bc + ad

)
=

( (a2 + b2)(c2 + d2)
bc + ad

)(a2 + b2

bc + ad

)

=
( (bc + ad)2 + (ac− bd)2

bc + ad

)(bc + ad

a2 + b2

)

=
( (ac− bd)2

bc + ad

)(bc + ad

a2 + b2

)
=

(bc + ad

a2 + b2

)
.
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If 2 | b, then 2 - a. From the above we have (a2 + b2, ac− bd) = 1 and so

(b + ad/c

p

)
= (−1)

d
2

(ac− bd

p

)
= (−1)

d
2

( p

ac− bd

)

= (−1)
d
2

( (a2 + b2)(c2 + d2)
ac− bd

)(a2 + b2

ac− bd

)

= (−1)
d
2

( (ac− bd)2 + (bc + ad)2

ac− bd

)(ac− bd

a2 + b2

)

= (−1)
d
2

(ac− bd

a2 + b2

)
.

If 2 - ab, then (a2 + b2)/2 ≡ 1 (mod 4). By the previous assertion we have
(a2 + b2, bc + ad) = 1 and so ((a2 + b2)/2, bc + ad) = 1. Hence

(b + ad/c

p

)
=

(bc + ad

p

)
=

( p

bc + ad

)

=
( 2

bc + ad

)( (c2 + d2)(a2 + b2)
bc + ad

)( (a2 + b2)/2
bc + ad

)

=
( 2

bc + ad

)( (bc + ad)2 + (ac− bd)2

bc + ad

)( bc + ad

(a2 + b2)/2

)

=
( 2

bc + ad

)( bc + ad

(a2 + b2)/2

)
= (−1)

(bc+ad)2−1
8

( bc + ad

(a2 + b2)/2

)
.

Note that (d/c)2 ≡ −1 (mod p). From (2.1) we have

(2.2) (b+ad/c)
p−1
2

(b +
√

a2 + b2

2

) p−1
2 ≡ (b+ad/c+

√
a2 + b2)p−1 (mod p).

As p - a(a2 + b2) we see that b+ad/c 6≡ 0 (mod p), b+
√

a2 + b2 6≡ 0 (mod p)
and so b + ad/c +

√
a2 + b2 6≡ 0 (mod p).

Now we assume (a2+b2

p ) = 1. By the above we have

( (b +
√

a2 + b2)/2
p

)(b + ad/c

p

)
=

(b + ad/c +
√

a2 + b2

p

)2

= 1.

Thus ( (b +
√

a2 + b2)/2
p

)
=

(b + ad/c

p

)
.

This together with the previous evaluation of ( b+ad/c
p ) proves (i).

Let us consider (ii). Suppose (a2+b2

p ) = −1. As

(
√

a2 + b2)p =
√

a2 + b2(a2 + b2)
p−1
2 ≡ −

√
a2 + b2 (mod p),

6



we see that

(b + ad/c +
√

a2 + b2)p ≡ (b + ad/c)p + (
√

a2 + b2)p

≡ b + ad/c−
√

a2 + b2 (mod p).

Thus

(b + ad/c +
√

a2 + b2)p−1 ≡ b + ad/c−√a2 + b2

b + ad/c +
√

a2 + b2

≡ (b−√a2 + b2)c
ad

(mod p).

Combining this with (2.2) we obtain

(b +
√

a2 + b2

2

) p−1
2 ≡

(b + ad/c

p

) (b−√a2 + b2)c
ad

(mod p).

Now applying the evaluation of ( b+ad/c
p ) we obtain (ii) and hence the theorem

is proved.
Remark 2.1 When 2 | a and a2 + b2 is a prime, Theorem 2.1(i) was known
to E. Lehmer [Le2].

Lemma 2.1. Let D, m, n ∈ Z with m2 −Dn2 = −4 and 2 | m. Then

m ≡
{

0 (mod 4) if 2 - D or 8 | D − 4,
2 (mod 4) if 4 | D − 2 or 8 | D.

Proof. As (m
2 )2 − Dn2

4 = −1 we see that 4 | Dn2 and 16 - Dn2. If 4 | D,
then 2 - n. Thus m/2 ≡ (m/2)2 = n2D/4 − 1 ≡ D/4 − 1 (mod 2) and so
m ≡ D/2− 2 (mod 4). If 4 | D − 2, then 2 | n and so (m

2 )2 = D(n
2 )2 − 1 ≡

1 (mod 2) and so 4 | m − 2. If 2 - D, then 4 | n2 and 16 - n2. Thus
n ≡ 2 (mod 4). Hence (m

2 )2 = D(n
2 )2 − 1 ≡ 0 (mod 2) and so 4 | m. Now

the proof is complete.

Theorem 2.2. Let D, m, n ∈ Z with m2 −Dn2 = −4. Let p ≡ 1 (mod 4)
be a prime such that p - Dn. Let p = c2 + d2(c, d ∈ Z) with 2 - c and let

δ =





(
mc+2d

D

)
if 2 - m,

(−1)
( m

2 c+d)2−1
8 + d

2
( m

2 c+d

D/2

)
if 4 | D − 2,

(−1)
( m

2 c+d)2−1
8 + d

2
( m

2 c+d

D/8

)
if 8 | D,

( c−m
2 d

D

)
if 2 - D and 2 | m,

( c−m
2 d

D/4

)
if 8 | D − 4.
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Then

(m + n
√

D

2

) p−1
2 ≡

{
δ (mod p) if (D

p ) = 1,

δ c
d · m−n

√
D

2 (mod p) if (D
p ) = −1.

Proof. We first assume (D
p ) = 1. As m2−Dn2 = −4 we have

( (m+n
√

D)/2
p

)

6= 0. If 2 - m, then clearly 2 - Dn. Taking a = 2 and b = m in Theorem
2.1(i) we see that

( (m + n
√

D)/2
p

)
=

( (m +
√

22 + m2)/2
p

)
=

(mc + 2d

22 + m2

)

=
(mc + 2d

Dn2

)
=

(mc + 2d

D

)
.

So the result is true. If 4 | D− 2 or 8 | D, then clearly 2 | m. By Lemma 2.1
we have m ≡ 2 (mod 4) and so Dn2

8 = m2+4
8 ≡ 1 (mod 2). Thus applying

Theorem 2.1(i) and the fact ( 2
p ) = (−1)

p−1
4 = (−1)

d
2 we see that

( (m + n
√

D)/2
p

)
=

( m
2 +

√
(m

2 )2 + 1
p

)
=

(2
p

)
(−1)

( m
2 c+d)2−1

8

( m
2 c + d

(m2 + 4)/8

)

= (−1)
( m

2 c+d)2−1
8 + d

2

( m
2 c + d

Dn2/8

)
= δ.

If 2 - D and 2 | m or if 8 | D − 4, by Lemma 2.1 we have 4 | m and so
Dn2

4 = (m
2 )2 + 1 ≡ 1 (mod 2). Thus applying Theorem 2.1(i) we have

( (m + n
√

D)/2
p

)
=

( m
2 +

√
(m

2 )2 + 1
p

)
=

(2
p

)
(−1)

d
2

( c− m
2 d

(m
2 )2 + 1

)

=
(c− m

2 d

Dn2/4

)
= δ.

When (D
p ) = −1, one can similarly prove the result by using Theorem

2.1(ii). Thus the theorem is proved.
As consequences of Theorem 2.2 we have:

Corollary 2.1. Suppose that p ≡ 1 (mod 4) is a prime and p = c2+d2(c, d ∈
Z) with 2 | d. Then

(1 +
√

2)
p−1
2 ≡

{
(−1)

(c+d)2−1
8 (mod p) if p ≡ 1 (mod 8),

−(−1)
(c+d)2−1

8 c
d (1−√2) (mod p) if p ≡ 5 (mod 8)

8



and

(1 +
√

5
2

) p−1
2 ≡

{ (
c+2d

5

)
(mod p) if p ≡ 1, 9 (mod 20),

(
c+2d

5

)
c
d · 1−√5

2 (mod p) if p ≡ 13, 17 (mod 20).

Proof. Taking m = n = 2 and D = 2 in Theorem 2.2 we obtain the
congruence for (1 +

√
2)

p−1
2 (mod p). Taking m = n = 1 and D = 5 in

Theorem 2.2 we obtain the remaining result.
Remark 2.2 When p ≡ 1 (mod 8) is a prime and p = c2 + d2 with 2 | d, the
congruence (1 +

√
2)

p−1
2 ≡ (−1)

p−1
8 + d

4 (mod p) was observed by Lehmer in
[Le4].

Using Theorem 2.2 one can also deduce the following results.

Corollary 2.2. Suppose that p ≡ 1 (mod 4) is a prime and p = c2+d2(c, d ∈
Z) with 2 | d. Then

(3 +
√

10)
p−1
2

≡




(−1)
(3c+d)2−1

8 + d
2
(

3c+d
5

)
(mod p) if p ≡ 1, 9, 13, 37 (mod 40),

(−1)
(3c+d)2−1

8 + d
2
(

3c+d
5

)
c
d (3−√10) (mod p) if p ≡ 17, 21, 29, 33 (mod 40)

and

(3 +
√

13
2

) p−1
2 ≡

{
( 3c+2d

13 ) (mod p) if p ≡ ±1,±3,±4 (mod 13),

( 3c+2d
13 ) c

d · 3−√13
2 (mod p) if p ≡ ±2,±5,±6 (mod 13).

Corollary 2.3. Suppose that p ≡ 1 (mod 4) is a prime and p = c2+d2(c, d ∈
Z) with 2 | d. Then

(4 +
√

17)
p−1
2

≡
{

( c−4d
17 ) (mod p) if p ≡ ±1,±2,±4,±8 (mod 17),

( c−4d
17 ) c

d (4−√17) (mod p) if p ≡ ±3,±5,±6,±7 (mod 17)

and

(5 +
√

26)
p−1
2

≡




(−1)
(5c+d)2−1

8 + d
2 ( 5c+d

13 ) (mod p) if ( p
13 ) = (−1)

p−1
4 ,

(−1)
(5c+d)2−1

8 + d
2 ( 5c+d

13 ) c
d (5−√26) (mod p) if ( p

13 ) = −(−1)
p−1
4 .
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Corollary 2.4. Suppose that p ≡ 1 (mod 4) is a prime and p = c2+d2(c, d ∈
Z) with 2 | d. Then

(5 +
√

29
2

) p−1
2 ≡

{
( 5c+2d

29 ) (mod p) if ( p
29 ) = 1,

( 5c+2d
29 ) c

d · 5−√29
2 (mod p) if ( p

29 ) = −1

and

(6 +
√

37)
p−1
2 ≡

{
( c−6d

37 ) (mod p) if ( p
37 ) = 1,

( c−6d
37 ) c

d (6−√37) (mod p) if ( p
37 ) = −1.

3. Congruences for U p±1
2

(b,−k2) (mod p) when p = c2 + d2.
For a, b ∈ Z let {Un(b, a)} and {Vn(b, a)} be the Lucas sequences defined

by (1.1) and (1.2). In the section we determine the values of U p−1
2

(b,−k2) and
V p−1

2
(b,−k2) (mod p) and give criteria for p | U p−1

4
(b,−k2), where b, k ∈ Z

and p is a prime such that p = c2 + d2 ≡ 1 (mod 4).

Theorem 3.1. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Let b, k ∈ Z with (k, b) = 1 and p - k(b2 + 4k2). Let

I =





(
bc+2kd
b2+4k2

)
if 2 - b,

(−1)
( b
2 c+kd)2−1

8 + d
2
( b

2 c+kd

(( b
2 )2+k2)/2

)
if 2 ‖ b,

( kc− b
2 d

( b
2 )2+k2

)
if 4 | b.

Then

U p−1
2

(b,−k2) ≡
{

0 (mod p) if ( b2+4k2

p ) = 1,

− c
kdI (mod p) if ( b2+4k2

p ) = −1

and

V p−1
2

(b,−k2) ≡
{

2I (mod p) if ( b2+4k2

p ) = 1,
bc
kdI (mod p) if ( b2+4k2

p ) = −1.

Proof. If 2 - b, taking a = 2k in Theorem 2.1 we see that

(b±√b2 + 4k2

2

) p−1
2

≡
{

( bc+2kd
b2+4k2 ) (mod p) if ( b2+4k2

p ) = 1,

( bc+2kd
b2+4k2 ) c

d · b∓√b2+4k2

2k (mod p) if ( b2+4k2

p ) = −1.
10



Thus

U p−1
2

(b,−k2) =
1√

b2 + 4k2

{(b +
√

b2 + 4k2

2

) p−1
2 −

(b−√b2 + 4k2

2

) p−1
2

}

≡
{

0 (mod p) if ( b2+4k2

p ) = 1,

− c
kd ( bc+2kd

b2+4k2 ) (mod p) if ( b2+4k2

p ) = −1

and

V p−1
2

(b,−k2) =
(b +

√
b2 + 4k2

2

) p−1
2

+
(b−√b2 + 4k2

2

) p−1
2

≡
{

2( bc+2kd
b2+4k2 ) (mod p) if ( b2+4k2

p ) = 1,
bc
kd ( bc+2kd

b2+4k2 ) (mod p) if ( b2+4k2

p ) = −1.

If 2 ‖ b, then 2 - k. By Theorem 2.1 and the fact
(

2
p

)
= (−1)

d
2 we have

(b±√b2 + 4k2

2

) p−1
2

≡
(2

p

)( b
2 ±

√
( b
2 )2 + k2

2

) p−1
2

≡





(−1)
( b
2 c+kd)2−1

8 + d
2
( b

2 c+kd

(( b
2 )2+k2)/2

)
(mod p) if ( b2+4k2

p ) = 1,

(−1)
( b
2 c+kd)2−1

8 + d
2
( b

2 c+kd

(( b
2 )2+k2)/2

)
c
d ·

b
2∓
√

( b
2 )2+k2

k (mod p)

if ( b2+4k2

p ) = −1.

This together with (1.3) and (1.4) yields the result in this case.
If 4 | b, using Theorem 2.1 we see that

(b±√b2 + 4k2

2

) p−1
2

≡
(2

p

)( b
2 ±

√
( b
2 )2 + k2

2

) p−1
2

≡





( kc− b
2 d

( b
2 )2+k2

)
(mod p) if ( b2+4k2

p ) = 1,

( kc− b
2 d

( b
2 )2+k2

)
c
d ·

b
2∓
√

( b
2 )2+k2

k (mod p) if ( b2+4k2

p ) = −1.

Now applying (1.3) and (1.4) we deduce the result. The proof is now complete.

Remark 3.1 Let a, b ∈ Z and p be an odd prime such that (a
p ) = 1 and

p - b2 − 4a. It is well known that p | U
(p−( b2−4a

p ))/2
(b, a), see [L]. Thus, if

p ≡ 1 (mod 4), p - k and ( b2+4k2

p ) = 1, then p | U p−1
2

(b,−k2).
Putting b = 1, 2, 3, 8 and k = 1 in Theorem 3.1 we deduce the following

results.
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Corollary 3.1. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Let Fn = Un(1,−1) and Ln = Vn(1,−1) be the Fibonacci and
Lucas sequences respectively. Then

F p−1
2
≡

{
0 (mod p) if p ≡ 1, 9 (mod 20),

−( c+2d
5 ) c

d (mod p) if p ≡ 13, 17 (mod 20)

and

L p−1
2
≡

{
2( c+2d

5 ) (mod p) if p ≡ 1, 9 (mod 20),

( c+2d
5 ) c

d (mod p) if p ≡ 13, 17 (mod 20).

Corollary 3.2. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Then

U p−1
2

(2,−1) ≡
{

0 (mod p) if p ≡ 1 (mod 8),

(−1)
(c+d)2−1

8 c
d (mod p) if p ≡ 5 (mod 8)

and

V p−1
2

(2,−1) ≡
{

2(−1)
(c+d)2−1

8 (mod p) if p ≡ 1 (mod 8),

−2(−1)
(c+d)2−1

8 c
d (mod p) if p ≡ 5 (mod 8).

Corollary 3.3. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Then

U p−1
2

(3,−1) ≡
{

0 (mod p) if p ≡ ±1,±3,±4 (mod 13),

−( 3c+2d
13 ) c

d (mod p) if p ≡ ±2,±5,±6 (mod 13)

and

V p−1
2

(3,−1) ≡
{

2( 3c+2d
13 ) (mod p) if p ≡ ±1,±3,±4 (mod 13),

3( 3c+2d
13 ) c

d (mod p) if p ≡ ±2,±5,±6 (mod 13).

Corollary 3.4. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Then

U p−1
2

(8,−1) ≡
{

0 (mod p) if p ≡ ±1,±2,±4,±8 (mod 17),

−( c−4d
17 ) c

d (mod p) if p ≡ ±3,±5,±6,±7 (mod 17)

and

V p−1
2

(8,−1) ≡
{

2( c−4d
17 ) (mod p) if p ≡ ±1,±2,±4,±8 (mod 17),

( c−4d
17 ) 8c

d (mod p) if p ≡ ±3,±5,±6,±7 (mod 17).
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Theorem 3.2. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Let b, k ∈ Z with (k, b) = 1 and p - k(b2 + 4k2). Let I be as in
Theorem 3.1. Then

U p+1
2

(b,−k2) ≡
{

I (mod p) if ( b2+4k2

p ) = 1,

0 (mod p) if ( b2+4k2

p ) = −1

and

V p+1
2

(b,−k2) ≡
{

bI (mod p) if ( b2+4k2

p ) = 1,

− 2kc
d I (mod p) if ( b2+4k2

p ) = −1.

Proof. Let Un = Un(b,−k2) and Vn = Vn(b,−k2). From (1.3) and (1.4)
we see that

(3.1) U p+1
2

=
1
2
(
bU p−1

2
+ V p−1

2

)
and V p+1

2
=

1
2
(
(b2 + 4k2)U p−1

2
+ bV p−1

2

)
.

Thus applying Theorem 3.1 we obtain the result.

Theorem 3.3. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Let b, k ∈ Z with (k, b) = 1, p - k and

(
b2+4k2

p

)
= 1. Let I be as in

Theorem 3.1. Then p | U p−1
4

(b,−k2) if and only if I =
(

2k
p

)
.

Proof. Set Un = Un(b,−k2) and Vn = Vn(b,−k2). From [Su3, Lemma 6.1]
we know that

(3.2) p | U p−1
4

⇐⇒ V p−1
2
≡ 2(−k2)

p−1
4 ≡ 2

(2k

p

)
(mod p).

Thus applying Theorem 3.1 we have

p | U p−1
4

⇐⇒ V p−1
2
≡ 2

(2k

p

)
(mod p) ⇐⇒ 2I ≡ 2

(2k

p

)
(mod p)

⇐⇒ I =
(2k

p

)
.

This proves the theorem.
Remark 3.2 Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Let b, k ∈ Z with (k, b) = 1, p - k and

(
b2+4k2

p

)
= −1. By Theorem

3.1 we have V p−1
2

(b,−k2) ≡ bc
kdI (mod p). As p - k(b2 + 4k2) we see that

bc
kd 6≡ ±2 (mod p) and so V p−1

2
(b,−k2) 6≡ 2( 2k

p ) (mod p). Thus, by (3.2) we
have p - U p−1

4
(b,−k2).

From (1.3) and (1.4) we know that

Un(bc, ac2) = cn−1Un(b, a) and Vn(bc, ac2) = cnVn(b, a).

Thus Un(b,−k2) = (k, b)n−1Un(b′,−k′2) and Vn(b,−k2) = (k, b)nVn(b′,−k′2),
where k′ = k/(k, b) and b′ = b/(k, b). Using this we may extend Theorems
3.1-3.3 to the case (k, b) > 1.

Putting k = 1 in Theorem 3.3 we obtain the following result.
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Corollary 3.5. Let p ≡ 1 (mod 4) be a prime and p = c2 + d2 with c, d ∈ Z
and 2 | d. Let b ∈ Z and

(
b2+4

p

)
= 1. Let {Un} be given by U0 = 0, U1 = 1

and Un+1 = bUn + Un−1(n ≥ 1). Then

p | U p−1
4

⇐⇒





(
bc+2d
b2+4

)
= (−1)

d
2 if 2 - b,

( b
2 c+d

(b2+4)/8

)
= (−1)

( b
2 c+d)2−1

8 if 2 ‖ b,
( c− b

2 d

1+b2/4

)
= (−1)

d
2 if 4 | b.

Remark 3.3 Let p ≡ 1, 9 (mod 20) be a prime and p = c2 +d2 with c, d ∈ Z
and 2 | d. Then clearly 5 | c or 5 | d. Let Fn = Un(1,−1) be the Fibonacci
sequence. From Corollary 3.5 we deduce

p | F p−1
4

⇐⇒
{

5 | c if p ≡ 9, 21 (mod 40),
5 | d if p ≡ 1, 29 (mod 40).

This result is due to E. Lehmer [Le1].

4. Congruences for
(

b+
√

a2+b2

2

) p−1
2 (mod p) when p = Ax2 +2Bxy+Cy2

and AC −B2 = a2 + b2.

Lemma 4.1 ([E2], [Su1, Proposition 1], [Su4, Lemma 2.1]). Let m ∈
N and a, b ∈ Z with 2 - m and (m,a2 + b2) = 1. Then

(a + bi

m

)2

4
=

(a2 + b2

m

)
.

Theorem 4.1. Let p be an odd prime and a, b ∈ Z with p - a(a2 + b2). Then

(b +
√

a2 + b2

2
√

a2 + b2

) p−1
2 ≡

{ ±1 (mod p) if
(

b+ai
p

)
4

= ±1,

± b−√a2+b2

a (mod p) if
(

b+ai
p

)
4

= ±i.

Proof. Substituting a, b, c by −a2, 2b,−a in [Su5, Theorem 3.1 and Corol-
lary 3.1] we see that

U p−1
2

(2b,−a2)

≡





0 (mod p) if 4 | p− 1 and (a2+b2

p ) = 1,
1
a (4a2 + 4b2)

p−1
4

(
2b+2ai

p

)
4
i (mod p) if 4 | p− 1 and (a2+b2

p ) = −1,

2(4a2 + 4b2)
p−3
4

(
2b+2ai

p

)
4

(mod p) if 4 | p− 3 and (a2+b2

p ) = 1,

− 2b
a (4a2 + 4b2)

p−3
4

(
2b+2ai

p

)
4
i (mod p) if 4 | p− 3 and (a2+b2

p ) = −1
14



and

V p−1
2

(2b,−a2)

≡





2(4a2 + 4b2)
p−1
4

(
2b+2ai

p

)
4

(mod p) if 4 | p− 1 and (a2+b2

p ) = 1,

− 2b
a (4a2 + 4b2)

p−1
4

(
2b+2ai

p

)
4
i (mod p) if 4 | p− 1 and (a2+b2

p ) = −1,

0 (mod p) if 4 | p− 3 and (a2+b2

p ) = 1,
1
a (4a2 + 4b2)

p+1
4

(
2b+2ai

p

)
4
i (mod p) if 4 | p− 3 and (a2+b2

p ) = −1.

Clearly
(

2b+2ai
p

)
4

=
(

b+ai
p

)
4
. By Lemma 4.1,

(
b+ai

p

)2

4
=

(
a2+b2

p

)
. Thus, if(

b+ai
p

)
4

= ±1, then
(

a2+b2

p

)
= 1; if

(
b+ai

p

)
4

= ±i, then
(

a2+b2

p

)
= −1. Hence

applying (1.3), (1.4) and the above we obtain

(b +
√

a2 + b2)
p−1
2 =

√
a2 + b2 U p−1

2
(2b,−a2) +

1
2
V p−1

2
(2b,−a2)

≡
{ ±(2

√
a2 + b2)

p−1
2 (mod p) if

(
b+ai

p

)
4

= ±1,

± b−√a2+b2

a (2
√

a2 + b2)
p−1
2 (mod p) if

(
b+ai

p

)
4

= ±i.

This yields the result.

Remark 4.1 When
(

b+ai
p

)
4

= ±1 (or
(

a2+b2

p

)
= 1), Theorem 4.1 can also

be deduced from [Su4, Theorem 2.4]. Note that
(

ai
p

)
4

=
(

i
p

)
4

=
(

2
p

)
. We see

that the result is true when p | b. Now assume p - b. As (a
b )2+1 =

(√
a2+b2

b

)2,
by [Su4, Theorem 2.4] we have

(a + bi

p

)
4

=
(a/b + i

p

)
4

=
(√a2 + b2/b

p

)(√a2 + b2/b + 1
p

)

and so

(b + ai

p

)
4

=
(b− ai

p

)
4

=
( i

p

)
4

(a + bi

p

)
4

=
(2

p

)(a + bi

p

)
4

=
(2
√

a2 + b2

p

)(b +
√

a2 + b2

p

)
.

This yields the result.

Corollary 4.1. Let p be an odd prime. Then

(1 +
√

2√
2

) p−1
2 ≡

{
(−1)

p∓1
8 (mod p) if p ≡ ±1 (mod 8),

(−1)
p±3
8 (1−√2) (mod p) if p ≡ ±5 (mod 8).
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Proof. Taking a = b = 1 in Theorem 4.1 we obtain

(1 +
√

2
2
√

2

) p−1
2 ≡

{ ±1 (mod p) if
(

1+i
p

)
4

= ±1,

±(1−√2) (mod p) if
(

1+i
p

)
4

= ±i.

To see the result, we note that 2
p−1
2 ≡ (−1)

p2−1
8 (mod p) and

(1 + i

p

)
4

= i
(−1)

p−1
2 p−1
4 =

{
(−1)

p∓1
8 if p ≡ ±1 (mod 8),

(−1)
p∓5
8 i if p ≡ ±5 (mod 8).

Corollary 4.2. Let p 6= 2, 5 be a prime. Then

(1 +
√

5
2
√

5

) p−1
2 ≡





1 (mod p) if p ≡ ±1 (mod 20),
−1 (mod p) if p ≡ ±9 (mod 20),
1−√5

2 (mod p) if p ≡ ±3 (mod 20),
−1+

√
5

2 (mod p) if p ≡ ±7 (mod 20).

Proof. Set p∗ = (−1)
p−1
2 p. Taking a = 2 and b = 1 in Theorem 4.1 and

noting that

(1 + 2i

p

)
4

=
(1 + 2i

p∗

)
4

=
( p∗

1 + 2i

)
4

=
{ ±1 if p∗ ≡ ±1 (mod 5),
±i if p∗ ≡ ±2 (mod 5)

we obtain the result.

Corollary 4.3. Let p 6= 2, 13 be a prime. Then

(3 +
√

13
2
√

13

) p−1
2 ≡





1 (mod p) if p ≡ ±1,±9,±23 (mod 52),
−1 (mod p) if p ≡ ±3,±17,±25 (mod 52),
3−√13

2 (mod p) if p ≡ ±15,±19,±21 (mod 52),
−3+

√
13

2 (mod p) if p ≡ ±5,±7,±11 (mod 52).

Proof. Set p∗ = (−1)
p−1
2 p. Taking a = 2 and b = 3 in Theorem 4.1 and

noting that

(3 + 2i

p

)
4

=
(3 + 2i

p∗

)
4

=
( p∗

3 + 2i

)
4

=
{ ±1 if p∗ ≡ ±1,±3,±9 (mod 13),
±i if p∗ ≡ ∓2,∓5,∓6 (mod 13)

we deduce the result.
Remark 4.2 Corollaries 4.1-4.3 can also be deduced from [Su2], [SS] and
[Su5] respectively.
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Corollary 4.4. Let p 6= 2, 17 be a prime. Then

(4 +
√

17√
17

) p−1
2 ≡





1 (mod p) if p ≡ ±1,±4 (mod 17),
−1 (mod p) if p ≡ ±2,±8 (mod 17),

4−√17 (mod p) if p ≡ ±3,±5 (mod 17),

−4 +
√

17 (mod p) if p ≡ ±6,±7 (mod 17).

Proof. Using the properties of the quartic Jacobi symbol, one can easily
see that

(2
p

)(4 + i

p

)
4

=
(2

p

)( i

p

)
4

(1− 4i

p

)
4

=
(1− 4i

p

)
4

=
( p

1− 4i

)
4

=





1 if p ≡ ±1,±4 (mod 17),
−1 if p ≡ ±2,±8 (mod 17),
i if p ≡ ±3,±5 (mod 17),
−i if p ≡ ±6,±7 (mod 17).

Now taking a = 1 and b = 4 in Theorem 4.1 and applying the above we
obtain the result.

Corollary 4.5. Let p 6= 2, 17 be a prime. Then

U p−1
2

(8,−1)

≡





0 (mod p) if p ≡ ±1,±2,±4,±8 (mod 17) and 4 | p− 1,

17
p−3
4 (mod p) if p ≡ ±1,±4 (mod 17) and p ≡ 3 (mod 4),

−17
p−3
4 (mod p) if p ≡ ±2,±8 (mod 17) and p ≡ 3 (mod 4),

−17
p−1
4 (mod p) if p ≡ ±3,±5 (mod 17) and p ≡ 1 (mod 4),

17
p−1
4 (mod p) if p ≡ ±6,±7 (mod 17) and p ≡ 1 (mod 4),

4 · 17
p−3
4 (mod p) if p ≡ ±3,±5 (mod 17) and p ≡ 3 (mod 4),

−4 · 17
p−3
4 (mod p) if p ≡ ±6,±7 (mod 17) and p ≡ 3 (mod 4)

and

V p−1
2

(8,−1)

≡





0 (mod p) if p ≡ ±1,±2,±4,±8 (mod 17) and 4 | p− 3,

2 · 17
p−1
4 (mod p) if p ≡ ±1,±4 (mod 17) and p ≡ 1 (mod 4),

−2 · 17
p−1
4 (mod p) if p ≡ ±2,±8 (mod 17) and p ≡ 1 (mod 4),

8 · 17
p−1
4 (mod p) if p ≡ ±3,±5 (mod 17) and p ≡ 1 (mod 4),

−2 · 17
p+1
4 (mod p) if p ≡ ±3,±5 (mod 17) and p ≡ 3 (mod 4),

−8 · 17
p−1
4 (mod p) if p ≡ ±6,±7 (mod 17) and p ≡ 1 (mod 4),

2 · 17
p+1
4 (mod p) if p ≡ ±6,±7 (mod 17) and p ≡ 3 (mod 4).
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Proof. From (1.3) and (1.4) we have

Un(8,−1) =
1

2
√

17

{
(4 +

√
17)n − (4−

√
17)n

}

and
Vn(8,−1) = (4 +

√
17)n + (4−

√
17)n.

Thus applying Corollary 4.4 we obtain the result.

Lemma 4.2. Let p be an odd prime, m ∈ Z, 4 - m and p - m. Let A ∈ Z,
A = 2rA0(2 - A0), (A,m) = 1 and p - A. Suppose Ap = x2 + my2 with
x, y ∈ Z, (x, y) = 1, x = 2αx0, y = 2βy0 and x0 ≡ y0 ≡ 1 (mod 4).

(i) If p ≡ 1 (mod 4), then

m
p−1
4 ≡





(−1)
p−1
4 (α+β+1)+

r(x0y0−1)
4

(
x0

mA0

)(
y0
A0

)
(mod p) if 2 - m,

(−1)
p−1
4 (α+β+1)+

x0−1
4

(
x0

Am/2

)(
y0
A

)
(mod p) if 2 ‖ m.

(ii) If p ≡ 3 (mod 4), then

m
p−3
4 ≡




−(−1)

p+1
4 (α+β+1)+

r(x0y0−1)
4

(
x0

mA0

)(
y0
A0

)
y
x (mod p) if 2 - m,

−(−1)
p+1
4 (α+β+1)+

x0−1
4

(
x0

Am/2

)(
y0
A

)
y
x (mod p) if 2 ‖ m.

Proof. As (A,m) = 1 and (x, y) = 1 we see that (A, x0) = (A, y0) =
(m,x0) = 1 and p - xy. It is clear that

(x0y0

p

)
=

(x0y0

A0p

)(x0y0

A0

)
=

( A0p

x0y0

)(x0y0

A0

)
=

( (x2 + my2)/2r

x0y0

)(x0y0

A0

)

=
( 2r

x0y0

)(my2

x0

)(x2

y0

)(x0y0

A0

)
=

( 2
x0y0

)r( m

x0

)(x0y0

A0

)

=





(
2

x0y0

)r(x0
m

)(
x0y0
A0

)
= (−1)

r(x0y0−1)
4

(
x0

mA0

)(
y0
A0

)
if 2 - m,

(
2
x0

)(m/2
x0

)(
x0y0

A

)
= (−1)

x0−1
4

(
x0

Am/2

)(
y0
A

)
if 2 ‖ m.

Thus

(x/y)
p−1
2 ≡

(x

p

)(y

p

)
=

(2
p

)α+β(x0y0

p

)

=





(
2
p

)α+β(−1)
r(x0y0−1)

4
(

x0
mA0

)(
y0
A0

)
(mod p) if 2 - m,

(
2
p

)α+β(−1)
x0−1

4
(

x0
Am/2

)(
y0
A

)
(mod p) if 2 ‖ m.

If p ≡ 1 (mod 4), then
(

2
p

)
= (−1)

p−1
4 and m

p−1
4 = (−1)

p−1
4 (−m)

p−1
4 ≡

(−1)
p−1
4 (x/y)

p−1
2 (mod p). If p ≡ 3 (mod 4), then

(
2
p

)
= (−1)

p+1
4 and
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m
p−3
4 = (−1)

p−3
4 (−m)

p−3
4 ≡ −(−1)

p+1
4 (x/y)

p−3
2 = −(−1)

p+1
4 (x/y)

p−1
2

y
x

(mod p).
Now putting all the above together we obtain the result.
For an odd prime p and m ∈ Z with (−m

p ) = 1, from the theory of
binary quadratic forms we know that p can be represented by some form
Ax2+2Bxy+Cy2 of discriminant −4m, where A,B, C ∈ Z and A is coprime
to a given positive integer. See [Su6, Lemma 3.1].

Theorem 4.2. Let p be an odd prime, m ∈ Z, 4 - m and p - m. Suppose
p = Ax2 + 2Bxy + Cy2 with A,B, C, x, y ∈ Z, p - A, (A, 2m) = 1 and
(2B)2 − 4AC = −4m. Assume Ax + By = 2αx0, y = 2βy0 and x0 ≡ y0 ≡
1 (mod 4).

(i) If p ≡ 1 (mod 4), then

m
p−1
4 ≡





(−1)
(m−1)y2−A+1

4
(

Ax+By
m

)(
B
A

)
(mod p) if 2 - m,

(−1)
p−1+A−A2+Amy2

8
(

Ax+By
m/2

)(
B
A

)
(mod p) if 2 ‖ m.

(ii) If p ≡ 3 (mod 4), then

m
p−3
4 ≡





(−1)
(m−1)y2+A−3

4
(

Ax+By
m

)(
B
A

)
y

Ax+By (mod p) if 2 - m,

(−1)
p−5+A−A2+Amy2

8
(

Ax+By
m/2

)(
B
A

)
y

Ax+By (mod p) if 2 ‖ m.

Proof. Set x1 = Ax + By. Then clearly Ap = A2x2 + 2ABxy + ACy2 =
(Ax + By)2 + (AC − B2)y2 = x2

1 + my2. As (A,m) = 1 and m = AC − B2

we have (A,B) = 1. Since (A, y) | p and p - A we have (A, y) = 1. Thus
(A, x1) = (A,By) = 1. As (m,x1) | Ap, p - m and (A,m) = 1, we see that
(m,x1) = 1. Since x2

1 + my2 = Ap 6≡ 0 (mod p2) and (x, y) | p we have
p - x1y and (x1, y) = (Ax, y) = (x, y) = 1.

We first assume 2 - m. It is clear that
(2

p

)α+β( x0

mA

)(y0

A

)
=

(2
p

)α+β( 2
mA

)α(Ax + By

mA

)( 2
A

)β( y

A

)

=
( 2

Ap

)α+β( 2
m

)α(Ax + By

m

)(By

A

)( y

A

)

=
( 2

x2
1 + my2

)α+β( 2
m

)α(Ax + By

m

)(B

A

)
.

As x2
1 + y2 ≡ x2

1 + my2 = Ap ≡ 1 (mod 2), we see that x1 + y ≡ 1 (mod 2).
If 2 | x1, then 2 - y, y2 ≡ 1 (mod 8) and so
( 2

x2
1 + my2

)
=

( 2
x2

1 + m

)
=

( 2
m

)( 2
mx2

1 + m2

)
=

( 2
m

)( 2
mx2

1 + 1

)

= (−1)
mx2

1(mx2
1+2)

8

( 2
m

)
= (−1)

mx2
1

4 (m
x2
1
2 +1)

( 2
m

)
= (−1)

x1
2

( 2
m

)
.
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If 2 - x1, then 2 | y, x2
1 ≡ 1 (mod 8) and thus

( 2
x2

1 + my2

)
=

( 2
1 + my2

)
= (−1)

my2(my2+2)
8 = (−1)

my2

4 (m y2

2 +1) = (−1)
y
2 .

Hence

( 2
x2

1 + my2

)α+β( 2
m

)α

=





(
2
m

)α(
2

x2
1+my2

)α = (−1)
x1
2 α = (−1)

x1
2 if 2 | x1,

(
2

x2
1+my2

)β = (−1)
y
2 β = (−1)

y
2 if 2 - x1

= (−1)
x1y
2

and therefore

(4.1)
(2

p

)α+β( x0

mA

)(y0

A

)
= (−1)

x1y
2

(x1

m

)(B

A

)
.

If p ≡ 1 (mod 4), then

(−1)
p−1
4 +

x1y
2 = (−1)

Ap−A
4 +

x1y
2 = (−1)

x2
1+my2−A

4 +
2x1y

4

= (−1)
(x1+y)2−1

4 +
(m−1)y2−A+1

4 = (−1)
(m−1)y2−A+1

4 .

This together with Lemma 4.2 and (4.1) yields

m
p−1
4 ≡ (−1)

p−1
4

(2
p

)α+β( x0

mA

)(y0

A

)
= (−1)

p−1
4 +

x1y
2

(x1

m

)(B

A

)

= (−1)
(m−1)y2−A+1

4

(x1

m

)(B

A

)
(mod p).

Similarly, if p ≡ 3 (mod 4), then

(−1)
p+1
4 +

x1y
2 = (−1)

Ap+A
4 +

x1y
2 = (−1)

x2
1+my2+A

4 +
2x1y

4

= (−1)
(x1+y)2−1

4 +
(m−1)y2+A+1

4 = (−1)
(m−1)y2+A+1

4 .

By Lemma 4.2 and (4.1) we have

m
p−3
4 ≡ −(−1)

p+1
4

(2
p

)α+β( x0

mA

)(y0

A

) y

x1
= −(−1)

p+1
4 +

x1y
2

(x1

m

)(B

A

) y

x1

= (−1)
(m−1)y2+A−3

4

(x1

m

)(B

A

) y

x1
(mod p).

Now we assume 2 ‖m. As x2
1 ≡ x2

1+my2 = Ap ≡ 1 (mod 2) we have 2 - x1

and so α = 0. When 2 | y we have Ap = x2
1 + my2 ≡ x2

1 ≡ 1 (mod 8) and so
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(
2

Ap

)
= 1. Since Ap = x2

1 + my2 and A2p = (A2 − 1)(p− 1) + p + A2 − 1 ≡
p− 1 + A2 (mod 16) we see that

(−1)
x2
1−1
8 +

p−(−1)
p−1
2

4

= (−1)
Ap−my2−1

8 +
2p−2(−1)

p−1
2

8 = (−1)
−A2p+Amy2+A

8 +
2p−2(−1)

p−1
2

8

= (−1)
−(p−1+A2)+Amy2+A+2p−2(−1)

p−1
2

8 = (−1)
p+1−A2+A−2(−1)

p−1
2 +Amy2

8 .

Thus (2
p

)α+β+1

(−1)
x0−1

4

( x0

Am/2

)(y0

A

)

= (−1)
x1−1

4

(2
p

)β+1( x1

Am/2

)( 2
A

)β( y

A

)

= (−1)
x1−1

4

(2
p

)( 2
Ap

)β( x1

m/2

)(By

A

)( y

A

)

= (−1)
x2
1−1
8 +

p−(−1)
p−1
2

4

( x1

m/2

)(B

A

)

= (−1)
p+1−A2+A−2(−1)

p−1
2 +Amy2

8

( x1

m/2

)(B

A

)
.

This together with Lemma 4.2 yields the result. Hence the theorem is proved.

Corollary 4.6. Let p be an odd prime and m ∈ N with 4 - m and p - m.
Suppose p = x2 + my2 for some integers x and y.

(i) If p ≡ 1 (mod 4), then

m
p−1
4 ≡





(−1)
x−1
2 ( x

m ) (mod p) if m ≡ 3 (mod 4),
( x

m ) (mod p) if m ≡ 1 (mod 8),

(−1)x−1( x
m ) (mod p) if m ≡ 5 (mod 8),

(−1)
x2−1

8 + m−2
4 · x−1

2 ( x
m/2 ) (mod p) if m ≡ 2 (mod 4).

(ii) If p ≡ 3 (mod 4) and we choose the sign of y so that y ≡ 1 (mod 4),
then

m
p−3
4 ≡

{
(−1)

m−3
4 ( x

m ) y
x (mod p) if m ≡ 3 (mod 4),

(−1)
m+2

4 · x+1
2 −1+ x2−1

8 ( x
m/2 ) y

x (mod p) if m ≡ 2 (mod 4).

Proof. Let x1 ∈ {x,−x} be such that x1 = 2αx0 and x0 ≡ 1 (mod 4). We
first assume p ≡ 1 (mod 4). Taking A = 1, B = 0 and C = m in Theorem
4.2 we have

(4.2) m
p−1
4 ≡





(−1)
(m−1)y2

4
(

x1
m

)
(mod p) if 2 - m,

(−1)
p−1+my2

8
(

x1
m/2

)
(mod p) if 2 ‖ m.
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If m ≡ 3 (mod 4), then 2 - x, 2 | y and so (−1)
(m−1)y2

4 = 1. Thus, by (4.2)

we have m
p−1
4 ≡ ( (−1)

x−1
2 x

m

)
= (−1)

x−1
2

(
x
m

)
(mod p). If m ≡ 1 (mod 8),

then
(

x
m

)
=

(−x
m

)
. Thus, by (4.2) we have m

p−1
4 ≡ (

x1
m

)
=

(
x
m

)
(mod p).

If m ≡ 5 (mod 8), then
(

x
m

)
=

(−x
m

)
and (−1)y = (−1)x−1. Thus, by (4.2)

we have m
p−1
4 ≡ (−1)y

(
x1
m

)
= (−1)x−1

(
x
m

)
(mod p). If m ≡ 2 (mod 4), we

have 2 | y and p ≡ x2 ≡ 1 (mod 8). Thus, by (4.2) we have

m
p−1
4 ≡ (−1)

p−1+my2

8

( x1

m/2

)
= (−1)

p−1−my2

8

( (−1)
x−1
2 x

m/2

)

= (−1)
x2−1

8 + m−2
4 · x−1

2

( x

m/2

)
(mod p).

Now assume p ≡ 3 (mod 4). Then clearly m ≡ 2, 3 (mod 4) and 2 - y. We
may choose the sign of y so that y ≡ 1 (mod 4). Taking A = 1, B = 0 and
C = m in Theorem 4.2(ii) we have

(4.3) m
p−3
4 ≡





(−1)
(m−1)y2−2

4
(

x1
m

)
y
x1

(mod p) if m ≡ 3 (mod 4),

(−1)
p−5+my2

8
(

x1
m/2

)
y
x1

(mod p) if m ≡ 2 (mod 4).

If m ≡ 3 (mod 4), as y2 ≡ 1 (mod 8) and
(

x
m

)
1
x =

(−x
m

)
1
−x we have m

p−3
4 ≡

(−1)
m−3

4
(

x1
m

)
y
x1

= (−1)
m−3

4
(

x
m

)
y
x (mod p). If m ≡ 2 (mod 4), then 2 - xy

and my2 = m(y2 − 1) + m ≡ m (mod 16). Thus, by (4.3) we have

m
p−3
4 ≡ (−1)

p−5+my2

8

( x1

m/2

) y

x1
= (−1)

x2−5+2my2

8

( x1

m/2

) y

x1

= (−1)
m−2

4 + x2−1
8

( (−1)
x−1
2 x

m/2

) y

(−1)
x−1
2 x

= (−1)
m−2

4 + x2−1
8 + x−1

2 + x−1
2 ·m−2

4

( x

m/2

)y

x

= (−1)
x+1
2 ·m+2

4 −1+ x2−1
8

( x

m/2

)y

x
(mod p).

This completes the proof.
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As examples, if p is an odd prime, we then have

2
p−1
4 ≡ (−1)

x2−1
8 (mod p) for p = x2 + 2y2 ≡ 1 (mod 8),

2
p−3
4 ≡ (−1)

x−1
2 + x2−1

8
y

x
(mod p) for p = x2 + 2y2 ≡ 3 (mod 8)

with y ≡ 1 (mod 4),

3
p−1
4 ≡ (−1)

x−1
2

(x

3

)
(mod p) for p = x2 + 3y2 ≡ 1 (mod 12),

3
p−3
4 ≡

(x

3

)y

x
(mod p) for p = x2 + 3y2 ≡ 7 (mod 12)

with y ≡ 1 (mod 4),

5
p−1
4 ≡ (−1)x−1

(x

5

)
(mod p) for p = x2 + 5y2 ≡ 1, 9 (mod 20)

and

6
p−1
4 ≡ (−1)

x−1
2 + x2−1

8

(x

3

)
(mod p) for p = x2 + 6y2 ≡ 1 (mod 24),

6
p−3
4 ≡ (−1)

x2−1
8 −1

(x

3

)y

x
(mod p) for p = x2 + 6y2 ≡ 7 (mod 24)

with y ≡ 1 (mod 4),

7
p−1
4 ≡ (−1)

x−1
2

(x

7

)
(mod p) for p = x2 + 7y2 ≡ 1, 9, 25 (mod 28),

7
p−3
4 ≡ −

(x

7

)y

x
(mod p) for p = x2 + 7y2 ≡ 11, 15, 23 (mod 28)

with y ≡ 1 (mod 4),

10
p−1
4 ≡ (−1)

x2−1
8

(x

5

)
(mod p) for p = x2 + 10y2 ≡ 1, 9 (mod 40),

10
p−3
4 ≡ (−1)

x−1
2 + x2−1

8

(x

5

)y

x
(mod p) for p = x2 + 10y2 ≡ 11, 19 (mod 40)

with y ≡ 1 (mod 4).

Remark 4.3 Let p be an odd prime. When p = x2 + 3y2 ≡ 1 (mod 12),
the congruence 3

p−1
4 ≡ (−1)

x−1
2

(
x
3

)
(mod p) was proved by Hudson and

Williams [HW] using cyclotomic numbers of order 6. When m ∈ {2, 3, 6}
and p = x2 + my2 ≡ 3 (mod 4), the above congruences for m

p−3
4 (mod p)

have been given in [Lem2, p. 180].
If p and m are distinct primes such that p ≡ m ≡ 1 (mod 4) and p =

x2 + my2(x, y ∈ Z). Then
(

m
p

)
=

(
p
m

)
=

(
x2

m

)
= 1 and

[
p
m

]
4

=
(

x
m

)
. Thus,

by Corollary 4.6(i) we have

[m

p

]
4

[ p

m

]
4

=
{

1 if m ≡ 1 (mod 8),
(−1)x−1 = (−1)y if m ≡ 5 (mod 8).

This is a classical result due to Brown [Bro1] and Lehmer [Le3].
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Theorem 4.3. Let p be an odd prime, m ∈ Z, 2 - m and p - m.
(i) If p ≡ 1 (mod 4) and 2p = x2 + my2 for x, y ∈ Z, then m

p−1
4 ≡

(−1)
m−1

8
(

x
m

)
(mod p).

(ii) If p ≡ 3 (mod 4) and 2p = x2 + my2 with x, y ∈ Z and 4 | x− y, then
m

p−3
4 ≡ (−1)

m−5
8

(
x
m

)
y
x (mod p).

(iii) If p ≡ 1 (mod 4) and 4p = x2 + my2 for x, y ∈ Z, then (−m)
p−1
4 ≡

(−1)
x−1
2

(
x
m

)
(mod p).

(iv) If p ≡ 3 (mod 4) and 4p = x2 + my2 with x, y ∈ Z and 4 | x− y, then
(−m)

p−3
4 ≡ (−1)

x−1
2

(
x
m

)
y
x (mod p).

Proof. As 2 - xy we may assume x ≡ y ≡ 1 (mod 4). We first assume
2p = x2 + my2. Then 2p ≡ 1 + m (mod 8) and so p ≡ 1 or 3 (mod 4)
according as m ≡ 1 or 5 (mod 8). If p ≡ 1 (mod 4), taking A = 2 in Lemma
4.2(i) we see that m

p−1
4 ≡ (−1)

p−1
4 + xy−1

4
(

x
m

)
(mod p). Clearly

(−1)
p−1
4 + xy−1

4 = (−1)
x2+my2−2

8 + xy−1
4 = (−1)

(x−y)2+2xy+(m−1)y2−2
8 + xy−1

4

= (−1)
xy+ m−1

2 y2−1
4 + xy−1

4 = (−1)
m−1

8 y2
= (−1)

m−1
8 .

Thus (i) is true. If p ≡ 3 (mod 4), then

(−1)
p+1
4 + xy−1

4 = (−1)
x2+my2+2

8 + xy−1
4 = (−1)

(x−y)2+2xy+(m−1)y2+2
8 + xy−1

4

= (−1)
xy+ m−1

2 y2+1
4 + xy−1

4 = (−1)
m−1

2 y2+2
4 = (−1)

m+3
8 .

Thus applying Lemma 4.2(ii) we obtain

m
p−3
4 ≡ −(−1)

p+1
4 + xy−1

4

( x

m

)y

x
= (−1)

m−5
8

( x

m

)y

x
(mod p).

This proves (ii).
Now assume 4p = x2 + my2. Then 1 + m ≡ x2 + my2 = 4p ≡ 4 (mod 8)

and hence m ≡ 3 (mod 8). Taking A = 4 in Lemma 4.2 we deduce (iii) and
(iv). So the theorem is proved.

Corollary 4.7. Let p be a prime such that p ≡ 3, 7 (mod 20) and hence
2p = x2 + 5y2 for some integers x and y. Suppose 4 | x− y. Then

5
p−3
4 ≡

{ y
x (mod p) if p ≡ 3 (mod 20),
− y

x (mod p) if p ≡ 7 (mod 20),

L p−1
2
≡ x

y
(mod p) and F p−1

2
≡ −1

2
F p+1

2
≡ y

x
(mod p).

Proof. As x2 ≡ 2p (mod 5) we see that
(

x
5

)
= 1 or −1 according as

p ≡ 3 (mod 20) or p ≡ 7 (mod 20). Thus taking m = 5 in Theorem 4.3(ii)
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we deduce the result for 5
p−3
4 (mod p). By the above and [SS, Corollaries 1

and 2] we have

L p−1
2
≡

{ −5
p+1
4 ≡ −5 y

x ≡ x
y (mod p) if p ≡ 3 (mod 20),

5
p+1
4 ≡ −5 y

x ≡ x
y (mod p) if p ≡ 7 (mod 20)

and

F p−1
2
≡ −1

2
F p+1

2
≡

{
5

p−3
4 ≡ y

x (mod p) if p ≡ 3 (mod 20),

−5
p−3
4 ≡ y

x (mod p) if p ≡ 7 (mod 20).

This completes the proof.

Lemma 4.3. Let a, b ∈ Z with 2 - a and 2 | b. For any integer x with
(x, a2 + b2) = 1 we have

( x2

a + bi

)
4

=
( x

a2 + b2

)
.

Proof. Suppose x = 2αx0(2 - x0). Using Lemma 4.1 and [Su6, (2.7) and
(2.8)] we see that

( x2

a + bi

)
4

=
( 2

a + bi

)2α

4

( x2
0

a + bi

)
4

= (−1)
b
2 α

(a + bi

x2
0

)
4

= (−1)
b
2 α

(a + bi

|x0|
)2

4
=

( 2
a2 + b2

)α(a2 + b2

|x0|
)

=
( 2α

a2 + b2

)( x0

a2 + b2

)
=

( x

a2 + b2

)
.

This proves the lemma.
Remark 4.4 Let a, b, c, d ∈ Z with 2 - c, 2 | d, (c, d) = 1 and (a2 + b2, c2 +
d2) = 1. Using Lemma 4.3 we have

(a + bi

c + di

)2

4
=

( (ac + bci)2c2

c + di

)
4

=
( (ac + bd)2c2

c + di

)
4

=
( (ac + bd)c

c2 + d2

)

=
(ac + bd

c2 + d2

)(c2 + d2

c

)
=

(ac + bd

c2 + d2

)
.

Theorem 4.4. Let p be an odd prime and a, b ∈ Z with p - a(a2 + b2) and
4 - a2 + b2. Suppose p = Ax2 + 2Bxy + Cy2 with A,B, C, x, y ∈ Z, p - A,
(A, 2(a2 + b2)) = 1 and (2B)2 − 4AC = −4(a2 + b2). Assume y/2ord2y ≡
(Ax + By)/2ord2(Ax+By) ≡ 1 (mod 4).
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(i) If p ≡ 1 (mod 4), then

( (b +
√

a2 + b2)/2
p

)

=





(−1)
a
2 y+ A−1

4
(

B
A

)(
b−ai

A

)
4

if 2 | a and 2 - b,

(−1)
p−A

4 + b
2 y

(
B
A

)(
a+bi

A

)
4

if 2 - a and 2 | b,
(−1)

y
2 i

A−1
4

(
B
A

)( a+b
2 − a−b

2 i

A

)
4

if 2 - ab, 4 | a− b and 2 | y,
i
3−A

4
(

B
A

)( a+b
2 − a−b

2 i

A

)
4

if 2 - ab, 4 | a− b and 2 - y.

(ii) If p ≡ 3 (mod 4), then

(b +
√

a2 + b2

2

) p−1
2

≡





(−1)
a
2 y+ A−3

4
(

B
A

)(
b−ai

A

)
4
i y
Ax+By · a2+b2−b

√
a2+b2

a (mod p)

if 2 | a and 2 - b,

(−1)
p−A

4 +1+ b
2 y

(
B
A

)(
a+bi

A

)
4
i y
Ax+By · a2+b2−b

√
a2+b2

a (mod p)

if 2 - a and 2 | b,
(−1)

y
2 +1i

3−A
4

(
B
A

)( a+b
2 − a−b

2 i

A

)
4

y
Ax+By · a2+b2−b

√
a2+b2

a (mod p)

if 2 - ab, 4 | a− b and 2 | y,
i

A−1
4

(
B
A

)( a+b
2 − a−b

2 i

A

)
4

y
Ax+By · a2+b2−b

√
a2+b2

a (mod p)

if 2 - ab, 4 | a− b and 2 - y.

Proof. As Ap = (Ax + By)2 + (a2 + b2)y2 we see that
(−(a2+b2)

p

)
= 1 and

so
(

b+ai
p

)2

4
=

(
a2+b2

p

)
= (−1)

p−1
2 by Lemma 4.1. Hence, if p ≡ 1 (mod 4),

then
(

b+ai
p

)
4

= ±1; if p ≡ 3 (mod 4), then
(

b+ai
p

)
4

= ±i. Thus applying
Theorem 4.1 we have
(4.4)(b +

√
a2 + b2

2

) p−1
2

≡
{

(a2 + b2)
p−1
4

(
b+ai

p

)
4

(mod p) if p ≡ 1 (mod 4),

−√a2 + b2(a2 + b2)
p−3
4 b−√a2+b2

a

(
b+ai

p

)
4
i (mod p) if p ≡ 3 (mod 4).

Now we consider the following three cases.
Case 1. 2 | a and 2 - b. In this case, Ap = (Ax + By)2 + (a2 + b2)y2 ≡

(Ax + By)2 + y2 ≡ 1 (mod 4) and

a2 + b2 ≡ a2 + 1 ≡
{

1 (mod 8) if 4 | a,
5 (mod 8) if 2 ‖ a.

26



Thus, if p ≡ 1 (mod 4), by Theorem 4.2(i) we have

(a2 + b2)
p−1
4 ≡ (−1)

a
2 y+ A−1

4

(Ax + By

a2 + b2

)(B

A

)
(mod p);

if p ≡ 3 (mod 4), by Theorem 4.2(ii) we have

(a2 + b2)
p−3
4 ≡ (−1)

a
2 y+ A−3

4

(Ax + By

a2 + b2

)(B

A

) y

Ax + By
(mod p).

On the other hand, using Lemma 4.3 we have

(b + ai

p

)
4

=
(b + ai

A

)−1

4

(b + ai

Ap

)
4

=
(b− ai

A

)
4

( Ap

b + ai

)
4

=
(b− ai

A

)
4

( (Ax + By)2 + (a2 + b2)y2

b + ai

)
4

=
(b− ai

A

)
4

( (Ax + By)2

b + ai

)
4

=
(b− ai

A

)
4

(Ax + By

a2 + b2

)
.

Hence, if p ≡ 1 (mod 4), then

(a2 + b2)
p−1
4

(b + ai

p

)
4
≡ (−1)

a
2 y+ A−1

4

(B

A

)(b− ai

A

)
4

(mod p);

if p ≡ 3 (mod 4), then

(a2 + b2)
p−3
4

(b + ai

p

)
4

≡ (−1)
a
2 y+ A−3

4

(B

A

)(b− ai

A

)
4

y

Ax + By
(mod p).

This together with (4.4) yields the result in the case.
Case 2. 2 - a and 2 | b. In this case, Ap = (Ax + By)2 + (a2 + b2)y2 ≡

(Ax + By)2 + y2 ≡ 1 (mod 4) and

a2 + b2 ≡ 1 + b2 ≡
{

1 (mod 8) if 4 | b,
5 (mod 8) if 2 ‖ b.

Thus, if p ≡ 1 (mod 4), by Theorem 4.2(i) we have

(a2 + b2)
p−1
4 ≡ (−1)

b
2 y+ A−1

4

(Ax + By

a2 + b2

)(B

A

)
(mod p);

if p ≡ 3 (mod 4), by Theorem 4.2(ii) we have

(a2 + b2)
p−3
4 ≡ (−1)

b
2 y+ A−3

4

(Ax + By

a2 + b2

)(B

A

) y

Ax + By
(mod p).
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On the other hand,

(b + ai

p

)
4

=
( i

p

)
4

(a− bi

p

)
4

= i
p2−1

4

(a− bi

A

)−1

4

(a− bi

Ap

)
4

= (−1)
p2−1

8

(a + bi

A

)
4

( Ap

a− bi

)
4

= (−1)
p2−1

8

(a + bi

A

)
4

( (Ax + By)2

a− bi

)
4

= (−1)
p−(−1)(p−1)/2

4

(a + bi

A

)
4

(Ax + By

a2 + b2

)
.

Now combining the above with (4.4) gives the result in this case.
Case 3. 2 - ab. In this case, a2 +b2 ≡ 2 (mod 8). We may choose the sign

of a so that 4 | a− b. It is clear that ab = a− b+ b2 +(a− b)(b− 1) ≡ a− b+
1 (mod 8) and thus A(a2+b2) ≡ 2abA ≡ 2A(a−b+1) ≡ 2(a−b)+2A (mod 16).
We also have Ap = (Ax + By)2 + (a2 + b2)y2 ≡ 1 + 2y2 ≡ 2− (−1)y (mod 8)
and so p ≡ A2p ≡ (2 − (−1)y)A (mod 8). Hence A ≡ (−1)

p−1
2 +y (mod 4)

and so A2 ≡ 2(−1)
p−1
2 +yA− 1 (mod 16). We also have

A(a2 + b2)y2 ≡
{

2Ay2 ≡ 4y (mod 16) if 2 | y,
A(a2 + b2) ≡ 2(a− b) + 2A (mod 16) if 2 - y.

Thus

A−A2 + A(a2 + b2)y2

≡
{

(1− 2(−1)(p−1)/2)A + 1 + 4y (mod 16) if 2 | y,

(3 + 2(−1)(p−1)/2)A + 1 + 2(a− b) (mod 16) if 2 - y.

If p ≡ 1 (mod 4), by the above and Theorem 4.2(i) we have

(a2 + b2)
p−1
4 ≡

{
(−1)

p−A
8 + y

2
(

B
A

)(
Ax+By

(a2+b2)/2

)
(mod p) if 2 | y,

(−1)
p+5A

8 + a−b
4

(
B
A

)(
Ax+By

(a2+b2)/2

)
(mod p) if 2 - y.

If p ≡ 3 (mod 4), by the above and Theorem 4.2(ii) we have

(a2 + b2)
p−3
4 ≡

{
(−1)

p−A
8 −1+ y

2
(

B
A

)(
Ax+By

(a2+b2)/2

)
y

Ax+By (mod p) if 2 | y,

(−1)
p+A−4

8 + a−b
4

(
B
A

)(
Ax+By

(a2+b2)/2

)
y

Ax+By (mod p) if 2 - y.

On the other hand, using [Su6, (2.8)], Lemma 4.3 and the fact p ≡ (2 −
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(−1)y)A (mod 8) we see that

(b + ai

p

)
4

=
(1 + i

p

)
4

( a+b
2 + a−b

2 i

Ap

)
4

( a+b
2 − a−b

2 i

A

)
4

= i
(−1)

p−1
2 p−1
4 (−1)

Ap−1
2 · a−b

4

( (Ax + By)2 + (a2 + b2)y2

a+b
2 + a−b

2 i

)
4

( a+b
2 − a−b

2 i

A

)
4

= (−1)
Ap−1

2 · a−b
4 i

(−1)(p−1)/2p−1
4

( a+b
2 − a−b

2 i

A

)
4

( (Ax + By)2
a+b
2 + a−b

2 i

)
4

= (−1)
a−b
4 yi

(−1)(p−1)/2(p−(2−(−1)y)A)
4 · i (−1)(p−1)/2(2−(−1)y)A−1

4

×
( a+b

2 − a−b
2 i

A

)
4

( Ax + By

(a2 + b2)/2

)

= (−1)
a−b
4 y+

p−(2−(−1)y)A
8 · i (−1)

p−1
2 A(2−(−1)y)−1

4

×
( a+b

2 − a−b
2 i

A

)
4

( Ax + By

(a2 + b2)/2

)

=





(−1)
p−A

8 i
(−1)(p−1)/2A−1

4
( a+b

2 − a−b
2 i

A

)
4

(
Ax+By

(a2+b2)/2

)
if 2 | y,

(−1)
a−b
4 + p−3A

8 i
−(−1)(p−1)/2A−1

4 −1
( a+b

2 − a−b
2 i

A

)
4

(
Ax+By

(a2+b2)/2

)
if 2 - y.

Now combining the above with (4.4) we deduce the result.
By the above the theorem is proved.

Remark 4.5 Let p be an odd prime and a, b ∈ Z with p - a(a2 + b2). Then
clearly

(b +
√

a2 + b2

a

) p−(−1
p

)

2
=

(√a2 + b2 + b√
a2 + b2 − b

) p−(−1
p

)

4
.

Set

f =





4
(2,1+ord2a) if 2 - b,
2 if 2 - a and 2 ‖ b,

2
(2,ord2a) if 2 | a and 2 ‖ b,

2
(2,a) if 4 | b

and F = a′
(a′,b)f , where a′ is the product of distinct odd prime divisors of

a. From the above and [Su6, Theorem 4.1] we deduce the congruences for(
b+
√

a2+b2

a

)(p−(−1
p ))/2 (mod p) by expressing p in terms of binary quadratic

forms of discriminant −4F 2(a2 +b2). As 4(a2 +b2) ≤ 4F 2(a2 +b2), Theorem
4.3 is stronger than the above result deduced from [Su6, Theorem 4.1].
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If (Ax + By)/2ord2(Ax+By) ≡ 3 (mod 4), then

(A(−x) + (−B)y)/2ord2(A(−x)+(−B)y) ≡ 1 (mod 4).

We also have
(

B
A

)
=

(−B
A

)
for A ≡ 1 (mod 4). Thus from Theorem 4.4 we

deduce the following result.

Corollary 4.8. Let p ≡ 1 (mod 4) be a prime and a, b ∈ Z with p - a(a2+b2)
and a2 +b2 ≡ 1 (mod 8). Suppose p = Ax2 +2Bxy+Cy2 with A,B, C, x, y ∈
Z, p - A, (A, 2(a2 + b2)) = 1 and (2B)2 − 4AC = −4(a2 + b2).

(i) If 4 | a and 2 - b, then

( (b +
√

a2 + b2)/2
p

)
= (−1)

A−1
4

(B

A

)(b− ai

A

)
4
.

(ii) If 2 - a and 4 | b, then

(b +
√

a2 + b2

p

)
= (−1)

A−1
4

(B

A

)(a + bi

A

)
4
.

Suppose that p is a prime such that p ≡ 1 (mod 4) and p ≡ ±1,±2,±4,±8
(mod 17). Then p is represented by x2 + 17y2 or 9x2 + 2xy + 2y2. Taking
a = 1 and b = 4 in Corollary 4.8(ii) we see that

(ε17

p

)
=

(4 +
√

17
p

)
=

{
1 if p = x2 + 17y2,(

1+4i
9

)
4

=
(

1+4i
3

)2

4
= −1 if p = 9x2 + 2xy + 2y2.

This together with Corollary 2.3 yields

(4.5) p = x2 + 17y2 ⇐⇒
(4 +

√
17

p

)
= 1 ⇐⇒

(c− 4d

17

)
= 1,

where c and d are given by p = c2 + d2(c, d ∈ Z) and 2 | d.

Corollary 4.9. Let p be an odd prime and a, b ∈ Z with p - a(a2 + b2).
Suppose p = x2 + (a2 + b2)y2 for some integers x and y.

(i) If 2 | a and 2 - b, then
( (b+

√
a2+b2)/2

p

)
= (−1)

a
2 y.

(ii) If 2 - a and 2 | b, then
(

b+
√

a2+b2

p

)
= (−1)

b
2 y.

(iii) If 2 - ab and 4 | a− b, then p ≡ 2− (−1)y (mod 8) and

(b +
√

a2 + b2)
p−1
2

≡
{

(−1)
y
2 (mod p) if 8 | p− 1,

− y
x · a2+b2−b

√
a2+b2

a (mod p) if 8 | p− 3 and 4 | x− y.
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Proof. If a + b ≡ 1 (mod 2), then clearly p = x2 + (a2 + b2)y2 ≡ x2 +
y2 ≡ 1 (mod 4). When 2 - ab, we have a2 + b2 ≡ 2 (mod 8), 2 - x and
p = x2 + (a2 + b2)y2 ≡ 1 + 2y2 ≡ 2 − (−1)y (mod 8). Thus, if 2 - ab and
p ≡ 3 (mod 4), then 2 - xy, p ≡ 3 (mod 8) and hence 2

p−1
2 ≡ −1 (mod p).

Now taking A = 1, B = 0 and C = a2 + b2 in Theorem 4.4 and applying the
above we deduce the result.

Let p be an odd prime. From Corollary 4.9 we deduce

( (1 +
√

5)/2
p

)
= (−1)y for p = x2 + 5y2(x, y ∈ Z),(4.6)

( (3 +
√

13)/2
p

)
= (−1)y for p = x2 + 13y2(x, y ∈ Z),(4.7)

(6 +
√

37
p

)
= (−1)y for p = x2 + 37y2(x, y ∈ Z).(4.8)

Here (4.6) is due to Vandiver [V], (4.7) and (4.8) are due to Brandler [B].
See also [Su6, Remark 6.1].

When p ≡ 3 (mod 8) is a prime and p = x2 + 2y2 with x ≡ y (mod 4), by
Corollary 4.9(iii) we have (1 +

√
2)

p−1
2 ≡ − y

x (2 −√2) (mod p). This result
has been given in [Lem2, p. 180].

Corollary 4.10. Let p ≡ 1, 9, 11, 19 (mod 40) be a prime and hence p =
x2 + 10y2 for some integers x and y. Then

(3 +
√

10)
p−1
2

≡
{

(−1)
y
2 (mod p) if p ≡ 1, 9 (mod 40),

y
x (10− 3

√
10) (mod p) if p ≡ 11, 19 (mod 40) and 4 | x− y.

Proof. Taking a = −1 and b = 3 in Corollary 4.9(iii) we obtain the result.

Corollary 4.11. Let p be an odd prime such that p ≡ 1, 3 (mod 8) and(
p
29

)
= 1. Then p = x2 + 58y2 for some x, y ∈ Z and

(7 +
√

58)
p−1
2

≡
{

(−1)
y
2 (mod p) if p ≡ 1 (mod 8),

− y
x · 58−7

√
58

3 (mod p) if p ≡ 3 (mod 8) and 4 | x− y.

Proof. By [SW, Table 9.1], a prime p is represented by x2 + 58y2 if and
only if

(−2
p

)
=

(
p
29

)
= 1. Now taking a = 3 and b = 7 in Corollary 4.9(iii)

we deduce the result.
Comparing Theorem 2.1(i) with Corollary 4.9 we have the following result.
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Theorem 4.5. Let p ≡ 1 (mod 4) be a prime and a, b ∈ Z with (a, b) = 1
and p - a(a2 + b2). Suppose p = c2 + d2 = x2 + (a2 + b2)y2 with c, d, x, y ∈ Z
and 2 | d.

(i) If 2 | a and 2 - b, then ( bc+ad
a2+b2 ) = (−1)

a
2 y.

(ii) If 2 - ab, then (−1)
(bc+ad)2−1

8 ( bc+ad
(a2+b2)/2 ) = (−1)

y
2 .

Suppose that p ≡ 1 (mod 4) is a prime and p = c2 + d2 with c, d ∈ Z and
2 | d. If p ≡ 1, 9 (mod 20), then p = x2 + 5y2 for some x, y ∈ Z. Taking
a = 2 and b = 1 in Theorem 4.5 we deduce

(
c+2d

5

)
= (−1)y and hence

(4.9) 2 | y ⇐⇒
(c + 2d

5

)
= 1 ⇐⇒

{
5 | d and p ≡ 1 (mod 20),
5 | c and p ≡ 9 (mod 20).

This result is essentially due to Lehmer [Le1]. See also [BEW, Corollary
8.3.4]. If p ≡ ±1,±3,±4 (mod 13), then p = x2 + 13y2 for some x, y ∈ Z.
Taking a = 2 and b = 3 in Theorem 4.5 we deduce

(
3c+2d

13

)
= (−1)y. If

( p
37 ) = 1, then p = x2 + 37y2 for some x, y ∈ Z (see [SW, Table 9.1]).

Taking a = 6 and b = 1 in Theorem 4.5 we deduce
(

c+6d
37

)
= (−1)y. If

p ≡ 1, 9 (mod 40) and hence p = x2 + 40y2 for some x, y ∈ Z, putting a = 3

and b = 1 in Theorem 4.5 we deduce (−1)
(c+3d)2−1

8
(

c+3d
5

)
= (−1)y.

5. Congruences for U p±1
2

(b,−k2) (mod p) when p = Ax2 + 2Bxy + Cy2

and AC −B2 = (b2 + 4k2)/(4, b2).
For n ∈ N and b, k ∈ Z with b2 + 4k2 6= 0, by (1.3) and (1.4) we have

(5.1) Un(b,−k2) =
1√

b2 + 4k2

{(b +
√

b2 + 4k2

2

)n

−
(b−√b2 + 4k2

2

)n}

and

(5.2) Vn(b,−k2) =
(b +

√
b2 + 4k2

2

)n

+
(b−√b2 + 4k2

2

)n

.

Theorem 5.1. Let p be an odd prime, b, k ∈ Z, 4 - b2 + k2 and p - k(b2 +
4k2). Let p = Ax2 + 2Bxy + Cy2 with A,B, C, x, y ∈ Z, p - A, (A, 2(b2 +
4k2)) = 1 and (2B)2 − 4AC = − 4

(4,b2) (b
2 + 4k2). Assume y/2ord2y ≡ (Ax +

By)/2ord2(Ax+By) ≡ 1 (mod 4). Let {Un} and {Vn} be given by

U0 = 0, U1 = 1, Un+1 = bUn + k2Un−1 (n ≥ 1);

V0 = 2, V1 = b, Vn+1 = bVn + k2Vn−1 (n ≥ 1).

(i) If p ≡ 1 (mod 4), then

p
∣∣ U p−1

2
, U p+1

2
≡ 1

2
V p−1

2
(mod p), V p+1

2
≡ b

2
V p−1

2
(mod p)
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and

V p−1
2
≡





2(−1)ky+ A−1
4

(
B
A

)(
b−2ki

A

)
4

(mod p) if 2 - b,

2(−1)
y
2 i

1−A
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

(mod p) if 8 | b− 2k and 2 | y,
2i

A−3
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

(mod p) if 8 | b− 2k and 2 - y,

2(−1)
A−1

4 + b
4 y

(
B
A

)(k+ b
2 i

A

)
4

(mod p) if 4 | b.

(ii) If p ≡ 3 (mod 4), then

p
∣∣ V p+1

2
, U p−1

2
≡ − b

b2 + 4k2
V p−1

2
(mod p), U p+1

2
≡ 2k2

b2 + 4k2
V p−1

2
(mod p)

and

V p−1
2
≡





(−1)ky+ A−3
4

(
B
A

)(
b−2ki

A

)
4
i (b2+4k2)y
k(Ax+By) (mod p)

if 2 - b,

(−1)
y
2 i

A−3
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

(b2+4k2)y
2k(Ax+By) (mod p)

if 8 | b− 2k and 2 | y,
−i

1−A
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

(b2+4k2)y
2k(Ax+By) (mod p)

if 8 | b− 2k and 2 - y,

(−1)
A−3

4 + b
4 y

(
B
A

)(k+ b
2 i

A

)
4
i (b2+4k2)y
2k(Ax+By) (mod p)

if 4 | b

Proof. We first determine
(

b±√b2+4k2

2

) p−1
2 (mod p) by considering the

following three cases.
Case 1. 2 - b. Taking a = 2k in Theorem 4.4 we see that

(b±√b2 + 4k2

2

) p−1
2

≡





(−1)ky+ A−1
4

(
B
A

)(
b−2ki

A

)
4

(mod p) if p ≡ 1 (mod 4),

(−1)ky+ A−3
4

(
B
A

)(
b−2ki

A

)
4
i y
Ax+By · b2+4k2∓b

√
b2+4k2

2k (mod p)

if p ≡ 3 (mod 4),

Case 2. 2 ‖ b. In this case, b/2 and k are odd. We choose the sign of k so
that k ≡ b/2 (mod 4). As Ap = (Ax + By)2 + (( b

2 )2 + k2)y2 ≡ (Ax + By)2 +
2y2 ≡ 1+2y2 ≡ 2−(−1)y (mod 8) we have p ≡ A2p ≡ (2−(−1)y)A (mod 8).
Thus

2
p−1
2 ≡ (−1)

p−(−1
p

)

4 = (−1)
(2−(−1)y)A−(−1

p
)

4 (mod p).
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Now applying the above and replacing a, b by k, b/2 in Theorem 4.4 we
obtain

(−1)
(2−(−1)y)A−(−1

p
)

4

(b±√b2 + 4k2

2

) p−1
2

≡
( b

2 ±
√

( b
2 )2 + k2

2

) p−1
2

≡





(−1)
y
2 i

A−1
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

(mod p) if 4 | p− 1 and 2 | y,

i
3−A

4
(

B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

(mod p) if 4 | p− 1 and 2 - y,

(−1)
y
2 +1i

3−A
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

y
Ax+By ·

( b
2 )2+k2∓ b

2

√
( b
2 )2+k2

k (mod p)

if 4 | p− 3 and 2 | y,

i
A−1

4
(

B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

y
Ax+By ·

( b
2 )2+k2∓ b

2

√
( b
2 )2+k2

k (mod p)

if 4 | p− 3 and 2 - y.

Case 3. 4 | b. In this case, k is odd and b/2 is even. Substituting a, b by
k, b/2 in Theorem 4.4 we see that

(−1)
p−(−1

p
)

4

(b±√b2 + 4k2

2

) p−1
2

≡
( b

2 ±
√

( b
2 )2 + k2

2

) p−1
2

≡





(−1)
p−A

4 + b
4 y

(
B
A

)(k+ b
2 i

A

)
4

(mod p) if p ≡ 1 (mod 4),

(−1)
p−A

4 +1+ b
4 y

(
B
A

)(k+ b
2 i

A

)
4
i y
Ax+By ·

( b
2 )2+k2∓ b

2

√
( b
2 )2+k2

k (mod p)

if p ≡ 3 (mod 4).

By (3.1) we have

U p+1
2

=
1
2
(
bU p−1

2
+ V p−1

2

)
and V p+1

2
=

1
2
(
(b2 + 4k2)U p−1

2
+ bV p−1

2

)
.

If p ≡ 1 (mod 4), by the above congruences for
(

b±√b2+4k2

2

) p−1
2 (mod p) and

(5.1)-(5.2) we deduce p | U p−1
2

and the congruence for V p−1
2

(mod p). As

p | U p−1
2

, we have U p+1
2
≡ 1

2V p−1
2

(mod p) and V p+1
2
≡ b

2V p−1
2

(mod p). If
p ≡ 3 (mod 4), as

b2 + 4k2 ∓ b
√

b2 + 4k2

2k
· b±√b2 + 4k2

2
= ±k

√
b2 + 4k2,
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by the above congruences for
(

b±√b2+4k2

2

) p−1
2 (mod p) and (5.2) we deduce

p | V p+1
2

and the congruence for V p−1
2

(mod p). Since p | V p+1
2

we have

U p−1
2
≡ − b

b2+4k2 V p−1
2

(mod p) and

U p+1
2
≡ 1

2

(
− b2

b2 + 4k2
V p−1

2
+ V p−1

2

)
=

2k2

b2 + 4k2
V p−1

2
(mod p).

This completes the proof.

Corollary 5.1. Let p be an odd prime and let {Un} be given by U0 = 0, U1 =
1 and Un+1 = 3Un + Un−1 (n ≥ 1).

(i) If p ≡ 1 (mod 4), p ≡ ±1,±3,±4 (mod 13) and hence p = x2 + 13y2

for some x, y ∈ Z, then p | U p−1
2

and U p+1
2
≡ (−1)y (mod p).

(ii) If p ≡ 3 (mod 4), p ≡ ±2,±5,±6 (mod 13), p 6= 7 and hence p =
7x2 + 2xy + 2y2 for some x, y ∈ Z, then

U p−1
2
≡ (−1)y+1 3y

7x + y
(mod p) and U p+1

2
≡ (−1)y 2y

7x + y
(mod p),

where x and y are chosen so that y/2ord2y ≡ (7x+y)/2ord2(7x+y) ≡ 1 (mod 4).

Proof. If p ≡ 1 (mod 4) and p ≡ ±1,±3,±4 (mod 13), by [SW, Table
9.1] we have p = x2 + 13y2 for some x, y ∈ Z. Now putting A = 1, B =
0, C = 13, b = 3 and k = 1 in Theorem 5.1(i) we see that p | U p−1

2
and

U p+1
2
≡ (−1)y (mod p). If p ≡ 3 (mod 4) and p ≡ ±2,±5,±6 (mod 13), by

[SW, Table 9.1] we have p = 7x2 ± 2xy + 2y2 for some x, y ∈ Z. We choose
the signs of x and y so that y/2ord2y ≡ (7x ± y)/2ord2(7x±y) ≡ 1 (mod 4).
Putting A = 7, B = 1, C = 2, b = 3 and k = 1 in Theorem 5.1(ii) we see
that

U p−1
2
≡ − 3

13
(−1)y+1

(±1
7

)(3− 2i

7

)
4
i

13y

7x± y
= (−1)y+1 3y

y ± 7x
(mod p)

and

U p+1
2
≡ 2

13
(−1)y+1

(±1
7

)(3− 2i

7

)
4
i

13y

7x± y
= (−1)y 2y

y ± 7x
(mod p)

This completes the proof.

Corollary 5.2. Let p ≡ 1 (mod 4) be a prime, b, k ∈ Z, 2 ‖ b, 2 - k and
p - k(b2 + 4k2). Suppose p = b2+4k2

8 x2 + 2y2 for some x, y ∈ Z. Then

p
∣∣ U p−1

2
(b,−k2), U p+1

2
(b,−k2) ≡ 1

2
V p−1

2
(b,−k2) ≡ (−1)

( b
2 )2−1

8 + y
2 (mod p)
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and

V p+1
2

(b,−k2) ≡ (−1)
( b
2 )2−1

8 + y
2 b (mod p).

Proof. We choose the signs of k and x so that k ≡ b/2 (mod 4) and
x ≡ 1 (mod 4). Set c = (b2 + 4k2)/8. Then c ≡ 1 (mod 4) and hence
p = cx2 + 2y2 ≡ 2y + 1 (mod 4). As p ≡ 1 (mod 4) we have 2 | y. Clearly
p = cx2 +2y2 = (c+2)x2− 4x(x− y)+ 2(x− y)2, (c+2)x± 2(x− y) ≡ cx ≡
1 (mod 4) and (−1)

y
2 (x−y) ≡ 1 (mod 4). We also have (c+2, 2(b2+4k2)) = 1

and 2 - x− y. If p | c + 2, then 2(x2 − y2) = (c + 2)x2 − p ≡ 0 (mod p). As
0 ≤ x2, y2 < p we deduce x2 = y2. But 2 - x and 2 | y. Thus x2 6= y2 and so
p - c + 2. Now putting A = c + 2, B = 2(−1)

y
2 +1, C = 2 and substituting y

by (−1)
y
2 (x− y) in Theorem 5.1(i) and then applying [Su6, (2.7) and (2.8)]

we obtain

1
2
V p−1

2
(b,−k2) ≡ i

(c+2)−3
4

(2(−1)
y
2 +1

c + 2

)( 2k+b
4 − 2k−b

4 i

c + 2

)
4

= i
c−1
4 (−1)

c+3
4 · (−1)

y
2 +1 · (−1)

c+1
2 · 2k−b

8

( c + 2
2k+b

4 − 2k−b
4 i

)
4

= (−1)
2k−b

8 + y
2 + c−1

4 i
c−1
4

( 2
2k+b

4 − 2k−b
4 i

)
4

= (−1)
2k−b

8 + y
2 + c−1

4 i
c−1
4 · i(−1)

b−2
4 2k−b

8 (mod p)

Set t = (2k − b)/8. Then b−2
4 = k−1

2 − 2t and

c =
b2 + 4k2

8
=

(2k − b)2 + 4(2k − 8t)k
8

= 8t2 + k2 − 4kt.

Thus

(−1)
2k−b

8 i
c−1
4 · i(−1)

b−2
4 2k−b

8

= (−1)ti
8t2−4kt+k2−1

4 · i(−1)
b−2
4 t = (−1)t · (−1)t2+ k2−1

8 i−kt · i(−1)
k−1
2 t

= (−1)
k2−1

8 i((−1)
k−1
2 −k)t = (−1)

k2−1
8 .

Hence

1
2
V p−1

2
(b,−k2) ≡ (−1)

y
2 + c−1

4 · (−1)
k2−1

8 = (−1)
y
2 +

( b
2 )2+k2−2

8 + k2−1
8

= (−1)
( b
2 )2−1

8 + y
2 (mod p).

By Theorem 5.1(i), p | U p−1
2

(b,−k2), U p+1
2

(b,−k2) ≡ 1
2V p−1

2
(b,−k2) (mod p)

and V p+1
2

(b,−k2) ≡ b
2V p−1

2
(b,−k2) (mod p). So the corollary is proved.

From (3.2) and Theorem 5.1 we deduce the following result.
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Theorem 5.2. Let p ≡ 1 (mod 4) be a prime, b, k ∈ Z, 4 - b2 + k2 and
p - k(b2 + 4k2). Suppose p = Ax2 + 2Bxy + Cy2 with A,B, C, x, y ∈ Z,
p - A, (A, 2(b2 + 4k2)) = 1 and (2B)2 − 4AC = − 4

(4,b2) (b
2 + 4k2). Assume

y/2ord2y ≡ (Ax + By)/2ord2(Ax+By) ≡ 1 (mod 4). Then p | U p−1
4

(b,−k2) if
and only if

(k

p

)
=





(−1)
(Ax+By)y

2
(

B
A

)(
b−2ki

A

)
4

if 2 - b,

(−1)
y
2 i

A−1
4

(
B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

if 8 | b− 2k and 4 | A− 1,

i
3−A

4
(

B
A

)( 2k+b
4 − 2k−b

4 i

A

)
4

if 8 | b− 2k and 4 | A− 3,

(−1)
(Ax+By)y

2
(

B
A

)(k+ b
2 i

A

)
4

if 4 | b.

Proof. If 2 ‖ b, then ( b
2 )2 + k2 ≡ 2 (mod 8) and thus Ap = (Ax + By)2 +

(( b
2 )2 + k2)y2 ≡ 1 + 2y2 ≡ 2− (−1)y (mod 8). Thus A ≡ Ap ≡ 2− (−1)y ≡

(−1)y (mod 4) and

(−1)
p−1
4 = (−1)

Ap−A
4 = (−1)

2−(−1)y−A
4 =

{
(−1)

A−1
4 if 4 | A− 1,

(−1)
A−3

4 if 4 | A− 3.

If 4 - b− 2, then (b2 + 4k2)/(4, b2) is odd. Hence

(−1)
p−1
4 = (−1)

Ap−A
4 = (−1)((Ax+By)2+ b2+4k2

(4,b2)
y2−A)/4

=





(−1)
y2(b2+4k2)/(4,b2)−A+1

4 = (−1)
y
2 + A−1

4 if 2 | y,

(−1)
Ax+By

2 + 1−A
4 +k if 2 - by,

(−1)
Ax+By

2 + 1−A
4 + b

4 if 4 | b and 2 - y.

From (3.2) we know that p | U p−1
4

if and only if V p−1
2
≡ 2(−1)

p−1
4

(
k
p

)
(mod p).

Thus applying the above and Theorem 5.1(i) we deduce the result.
Putting A = 1, B = 0 and C = (b2 +4k2)/(4, b2) in Theorem 5.2 we have:

Corollary 5.3. Let p ≡ 1 (mod 4) be a prime, b, k ∈ Z, 4 - b2 + k2 and
p - k(b2 + 4k2). Suppose p = x2 + b2+4k2

(4,b2) y2 for some x, y ∈ Z. Then

p | U p−1
4

(b,−k2) ⇐⇒
(k

p

)
= (−1)

xy
2 .

Remark 5.1 When k = 1 and 2 - b, Corollary 5.3 has been given in [Su5,
Theorem 5.3]. See also [Su6, Corollary 7.1].
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Theorem 5.3. Let p ≡ 1 (mod 4) be a prime, b, k ∈ Z, 2 ‖ b, 2 - k and
p - k(b2 + 4k2). Suppose p = b2+4k2

8 x2 + 2y2 for some x, y ∈ Z. Then

p | U p−1
4

(b,−k2) if and only if (−1)
k2−1

8
(

k
p

)
= (−1)

y
2 .

Proof. As p ≡ 1 (mod 4) we have 2 - x and 2 | y. Thus p = b2+4k2

8 x2 +

2y2 ≡ 1
2 (( b

2 )2 + k2) (mod 8) and hence
(

2
p

)
= (−1)

p−1
4 = (−1)

( b
2 )2+k2−2

8 .
Therefore, by (3.2) and Corollary 5.2 we have

p
∣∣ U p−1

4
(b,−k2) ⇐⇒ V p−1

2
(b,−k2) ≡ 2

(2k

p

)
(mod p)

⇐⇒ (−1)
( b
2 )2−1

8 + y
2 =

(2k

p

)

⇐⇒ (−1)
( b
2 )2−1

8 + y
2 = (−1)

( b
2 )2+k2−2

8

(k

p

)

⇐⇒ (−1)
y
2 = (−1)

k2−1
8

(k

p

)
.

This proves the theorem.

Corollary 5.4. Let b ∈ {2, 14}. Let p 6= 2b+1 be a prime of the form 4n+1.
Then p | U p−1

4
(b,−9) if and only if p = x2 + 8(2b + 1)y2 with x, y ∈ Z and

(−1)y =
(

p
3

)
, or p = (2b + 1)x2 + 8y2 with x, y ∈ Z and (−1)y = −(

p
3

)
.

Proof. From Remark 3.2 we know that p - U p−1
4

(b,−9) when ( 4b+2
p ) = −1.

If p = x2+8(2b+1)y2 or (2b+1)x2+8y2, then clearly (4b+2
p ) = (−2(2b+1)

p ) = 1.
So the result holds when (4b+2

p ) = −1. Now assume ( 4b+2
p ) = (−4b−2

p ) = 1.
From [SW, Table 9.1] we know that p = x2 + (4b + 2)y2 or (2b + 1)x2 + 2y2

according as (−2
p ) = ( p

2b+1 ) = 1 or (−2
p ) = ( p

2b+1 ) = −1. If p ≡ 1 (mod 8)
and ( p

2b+1 ) = 1, then p = x2+(4b+2)y2 with 2 | y. Taking k = 3 in Corollary
5.3 we see that

p | U p−1
4

(b,−9) ⇐⇒
(3

p

)
= (−1)

xy
2 ⇐⇒

(p

3

)
= (−1)

y
2 .

If p ≡ 5 (mod 8) and ( p
2b+1 ) = −1, then p = (2b + 1)x2 + 2y2 with 2 | y.

Taking k = 3 in Theorem 5.3 we obtain

p | U p−1
4

(b,−9) ⇐⇒ (−1)
32−1

8

(3
p

)
= (−1)

y
2 ⇐⇒ (−1)

y
2 = −

(p

3

)
.

The proof is now complete.
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Theorem 5.4. Let p be an odd prime.
(i) If p ≡ 1, 9, 11, 19 (mod 40) and hence p = x2 + 10y2 for some integers

x and y, then

U p−1
2

(6,−1) ≡
{

0 (mod p) if p ≡ 1, 9 (mod 40),

− 3y
x (mod p) if p ≡ 11, 19 (mod 40) and 4 | x− y

and

U p+1
2

(6,−1) ≡
{

(−1)
y
2 (mod p) if p ≡ 1, 9 (mod 40),

y
x (mod p) if p ≡ 11, 19 (mod 40) and 4 | x− y.

(ii) If p ≡ 13, 37 (mod 40) and hence p = 5x2 + 2y2 for some integers x

and y, then p | U p−1
2

(6,−1) and U p+1
2

(6,−1) ≡ (−1)
y
2 +1 (mod p).

Proof. From (1.3) and Corollary 4.10 we deduce (i). Putting b = 6 and
k = 1 in Corollary 5.2 we deduce (ii). So the theorem is proved.

Theorem 5.5. Let p be an odd prime.
(i) If (−2

p ) = ( p
29 ) = 1 and hence p = x2 + 58y2 for some integers x and

y, then

U p−1
2

(14,−9) ≡
{

0 (mod p) if p ≡ 1 (mod 8),
7y
3x (mod p) if p ≡ 3 (mod 8) and 4 | x− y

and

U p+1
2

(14,−9) ≡
{

(−1)
y
2 (mod p) if p ≡ 1 (mod 8),

− 3y
x (mod p) if p ≡ 3 (mod 8) and 4 | x− y.

(ii) If p ≡ 5 (mod 8), ( p
29 ) = −1 and hence p = 29x2 + 2y2 for some

integers x and y, then p | U p−1
2

(14,−9) and U p+1
2

(14,−9) ≡ (−1)
y
2 (mod p).

Proof. From (1.3) and Corollary 4.11 we deduce (i). Putting b = 14 and
k = 3 in Corollary 5.2 we deduce (ii). So the theorem is proved.
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