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Notation: Z the set of integers, N the set
of positive integers, [x] the greatest integer
not exceeding x, {x} the fractional part of x,
( a
m) the (quadratic) Jacobi symbol, (α

π)3 the
cubic Jacobi symbol,(α

π)4 the quartci Jacobi
symbol, Zp the set of rational p−adic inte-
gers, ordpm the nonnegative integer α such
that pα | m but pα+1 - m, (a, b) the greatest
common divisor of a and b.
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§ 1. Rational cubic reciprocity law

Let p > 3 be a prime and a ∈ Z with p - a. If
p ≡ 2 (mod 3), then x3 ≡ a (mod p) is always
solvable.

If p ≡ 1 (mod 3), Euler showed that there are
unique positive integers L and M such that
4p = L2 + 27M2.

Euler’s Conjectures (1748-1750):

For any prime p ≡ 1 (mod 3),

x3 ≡ 2 (mod p) is solvable

⇐⇒ p = A2 + 27B2 (A, B ∈ Z),
x3 ≡ 3 (mod p) is solvale

⇐⇒ 4p = A2 + 243B2 (A, B ∈ Z).
For any prime p ≡ 1 (mod 4),

x4 ≡ 2 (mod p) is solvable ⇐⇒ p = A2 + 64B2,

x4 ≡ 5 (mod p) is solvable ⇐⇒ p = A2 + 100B2.
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Let p be a prime of the form 3k + 1 and so

4p = L2 + 27M2. For a ∈ Z with p - a, since

(L/(3M))2 ≡ −3 (mod p) we see that

x3 ≡ a (mod p) is solvable ⇐⇒ a
p−1
3 ≡ 1 (mod p),

and that

a
p−1
3 ≡ 1,

−1 + L/(3M)

2
or
−1− L/(3M)

2
(mod p).

Problem: Determine a
p−1
3 (mod p).

Jacobi(1827): Let p and q be distinct primes

of the form 3k + 1, 4p = L2 + 27M2, 4q =

L′2+27M ′2. Then q is a cubic residue modulo

p if and only if (LM ′−L′M)/(LM ′+ L′M) is a

cubic residue modulo q.
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Z.H. Sun([S2, 1998]): for i = 0,1,2,

q
p−1
3 ≡

(−1− L/(3M)

2

)i
(mod p)

⇐⇒
(

LM ′ − L′M
LM ′ + L′M

)q−1
3 ≡

(−1− L′/(3M ′)
2

)i
(mod q).

Jacobi: q
p−1
3 (mod p) depends only on L

M (mod q).

Let p be a prime of 4k+1 and 4p = L2+27M2.

Then

x3 ≡ 5 (mod p) is solvable ⇐⇒ 5 | L or 5 | M,

x3 ≡ 7 (mod p) is solvable ⇐⇒ 7 | L or 7 | M,

x3 ≡ 11 (mod p) is solvable ⇐⇒ 11 | L, 11 | M
or L ≡ ±5 · 3M (mod 11),

x3 ≡ 13 (mod p) is solvable ⇐⇒ 13 | L, 13 | M,

or L ≡ ±4 · 3M (mod 13).
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E. Lehmer (1959/1961): If L ≡ M (mod 4),

then

2
p−1
3 ≡ −1− L/(3M)

2
(mod p).

In 1975 K.S. Williams found a method to de-

termine the sign of M such that q
p−1
3 ≡ −1−L/(3M)

2
(mod p) when q is a cubic non-residue of p.

For a prime q > 3 let Fq = Z/qZ be the ring of

residue classes modulo q and

C(q) = {∞} ∪ {x
∣∣∣ x ∈ Fq, x2 6= −3}.
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For x, y ∈ C(q), in [S2] the author introduced
the operation

x ∗ y =
xy − 3

x + y
(x ∗∞ = ∞∗ x = x)

and proved that C(q) is a cyclic group of order
q − (q

3), where (a
p) is the Legendre symbol.

Example:(1) C(5) = {0,±1,±2,∞}.

1 ∗ 2 =
1 · 2− 3

1 + 2
= −1

3
= −2

1 ∗ (−2) =
1 · (−2)− 3

1 + (−2)
= 5 = 0.

(2) C(7) = {0,±1,±3,∞}.

3 ∗ 3 =
3 · 3− 3

3 + 3
= 1,

1 ∗ (−1) =
1 · (−1)− 3

1 + (−1)
= ∞.

Combining [S2, Corollary 2.1] with [S2, Theo-
rem 3.2 and Corollary 3.3] we have:
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Theorem 1.1 (Rational cubic reciprocity

law) Let p and q be distinct primes greater

than 3. Suppose p ≡ 1 (mod 3) and hence

4p = L2 + 27M2 for some L, M ∈ Z. Then

q is a cubic residue modulo p

⇐⇒ L

3M
is a cube in C(q)

⇐⇒ q | M or
L

3M
≡ x3 − 9x

3x2 − 3
(mod q) for some x ∈ Z.

For given prime p > 3 let C0(p) be the set of all

cubes in C(p). Suppose s ∈ {1,2, . . . , p−1
2 } and

s2 ≡ −3 (mod p). Computing x3−9x
3x2−3

(mod p)

for x ∈ {0,±1,±2, . . . ,±p−1
2 }−{±s} we get C0(p).

Example: C0(13) = {0,∞,±4}. Thus,

13 is a cubic residue of p

⇐⇒ 13 | L, 13 | M or
L

3M
≡ ±4 (mod 13).
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§2. The cubic Jacobi symbol

Let Z be the set of integers, ω = (−1+
√−3)/2

and Z[ω] = {a+ bω | a, b ∈ Z}. For π = a+ bω ∈
Z[ω] the norm of π is given by Nπ = ππ̄ =
a2−ab+b2, where π̄ is the complex conjugate of
π. We recall that π is primary if π ≡ 2 (mod 3)
(that is, 3 | a− 2 and 3 | b).

If π ∈ Z[ω], Nπ > 1 and π ≡ ±2 (mod 3), we
may write π = ±π1 · · ·πr, where π1, . . . , πr are
primary primes. For α ∈ Z[ω], we can define
the cubic Jacobi symbol

(
α

π

)

3
=

(
α

π1

)

3
· · ·

(
α

πr

)

3
,

where
(

α
πt

)
3

is the cubic residue character of α

modulo πt defined by
(

α

πt

)

3
=

{
0 if πt | α,

ωi if α(Nπt−1)/3 ≡ ωi (mod πt).

For our convenience we also define
(

α
1

)
3

=(
α
−1

)
3

= 1.
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According to [IR, pp. 112-115, 135, 313] and
[S2] the cubic Jacobi symbol has the following
properties:

(2.1) If a, b ∈ Z and a + bω ≡ 2 (mod 3), then
(

ω

a + bω

)

3
= ω

a+b+1
3 and

(
1− ω

a + bω

)

3
= ω

2(a+1)
3 .

(2.2) (cubic reciprocity law (Eisenstein,1844;
Jacobi,1837)) If π, λ ∈ Z[ω] and π, λ ≡ ±2 (mod 3),
then (

λ

π

)

3
=

(
π

λ

)

3
.

(2.3) If α, π ∈ Z[ω] with π ≡ ±2 (mod 3) and
(α

π)3 6= 0, then

(
α

π

)−1

3
=

(
α

π

)

3
=

(
ᾱ

π̄

)

3
.

(2.4) If m, n ∈ Z, 3 - m and m is coprime to n,
then

(
n
m

)
4

= 1.
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(2.5) If π, α, β ∈ Z[ω] and π ≡ ±2 (mod 3),

then
(

αβ
π

)
3

=
(

α
π

)
3

(
β
π

)
4
.

(2.6) If π1, π2, α ∈ Z[ω] and πi ≡ ±2 (mod 3)

(i = 1,2), then
(

α

π1π2

)

3
=

(
α

π1

)

3

(
α

π2

)

3
.

For a given prime p and k ∈ Fp, we have

k ∈ C0(p) ⇐⇒
(

k + 1 + 2ω

p

)

3
= 1

⇐⇒ k ≡ x3 − 9x

3x2 − 3
(mod q) for some x ∈ Z.

§3. The criterion for m
p−1
3 (mod p) in terms

of binary quadratic forms
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Theorem 3.1 ([S8, 2007]). Let p ≡ 1 (mod 3)

be a prime. Let m be a cubefree integer with

m 6≡ 0,±1 (mod p) and m 6≡ 1 (mod 3). Let

m0 be the product of all distinct primes q sat-

isfying q | m and q > 3. Let k3 be given by

k3 =





1 if m ≡ 8 (mod 9),

3 if m ≡ 2,5 (mod 9),

9 if m ≡ 0 (mod 3).

and k = 3+(−1)m

2 k3m0. Suppose p = ax2 +

bxy + cy2 with a, b, c, x, y ∈ Z, b2 − 4ac = −3k2

and (a,6m) = 1. If p - a, then

m
p−1
3 ≡





1 (mod p)

if
(
(m−1)b+k(m+1)(1+2ω)

a

)
3

= 1,

−ax + (k + b)y/2

ky
(mod p)

if
(
(m−1)b+k(m+1)(1+2ω)

a

)
3

= ω,

ax− (k − b)y/2

ky
(mod p)

if
(
(m−1)b+k(m+1)(1+2ω)

a

)
3

= ω2.
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If p | a, then

m
p−1
3 ≡





1 (mod p)

if
(
(m−1)b+k(m+1)(1+2ω)

p

)
3

= 1,

b− k

2k
(mod p)

if
(
(m−1)b+k(m+1)(1+2ω)

p

)
3

= ω,

−b + k

2k
(mod p)

if
(
(m−1)b+k(m+1)(1+2ω)

p

)
3

= ω2.

Example: Let p be a prime of the form 3n+1.

Then

2
p−1
3

≡




1 (mod p) if p = x2 + 27y2,
7x− 2y

6y
(mod p) if p = 7x2 + 2xy + 4y2 6= 7
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and

10
p−1
3 ≡





1 (mod p)

if p = x2 + 75y2, 3x2 + 25y2,
7x− 2y

10y
(mod p)

if p = 7x2 + 6xy + 12y2 6= 7,

−19x + 6y

10y
(mod p)

if p = 19x2 + 2xy + 4y2 6= 19.

§4. Criteria for ε
(p−(p

3))/3
d (mod p)

Let d > 1 be a squarefree integer, and let
εd be the fundamental unit of the quadratic
field Q(

√
d). Then εd = (m + n

√
d)/2 for some

m, n ∈ N and m2−dn2 = ±4. Let p ≡ 1 (mod 3)
be a prime such that (d

p) = 1. If d ∈ {2,3,5},
in 1973 E. Lehmer proved that εd is a cubic
residue modulo p if and only if p = x2 + 27dy2

for some x, y ∈ Z. In [S2], the author gave the
criteria for εd to be a cubic residue of p in the
cases d = 6,15,21.
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Theorem 4.1. Suppose m, n, d ∈ Z and m2 −
dn2 = −4. Let p > 3 be a prime not dividing
d. Let

k =





1 if d 6≡ 2 (mod 4) and 9 | m,

2 if d ≡ 2 (mod 4) and 9 | m,

3 if d 6≡ 2 (mod 4) and 9 - m,

6 if d ≡ 2 (mod 4) and 9 - m.

Suppose p = ax2+bxy+cy2 with a, b, c, x, y ∈ Z,
b2 − 4ac = −3k2d and (a,6) = 1. If p - a, then

(
m + n

√
d

2

)p−(p
3)

3

≡





(
p

3
) (mod p)

if
(

bn−km(1+2ω)
a

)
3

= 1,

1

2
(−(

p

3
)− 2ax + by

kdy

√
d) (mod p)

if
(

bn−km(1+2ω)
a

)
3

= ω,

1

2
(−(

p

3
) +

2ax + by

kdy

√
d) (mod p)

if
(

bn−km(1+2ω)
a

)
3

= ω2.
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If p | a, then

(
m + n

√
d

2

)p−(p
3)

3

≡





(
p

3
) (mod p)

if
(

bn−km(1+2ω)
p

)
4

= 1,

1

2

(
− (

p

3
) +

b
√

d

kd

)
(mod p)

if
(

bn−km(1+2ω)
p

)
4

= ω,

1

2

(
− (

p

3
)− b

√
d

kd

)
(mod p)

if
(

bn−km(1+2ω)
p

)
4

= ω2.
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Example 4.1 Let p be a prime such that p ≡
1,5,7,11 (mod 24). Then

(1 +
√

2)
p−1
3

≡





1 (mod p) if p = x2 + 54y2,

−1

2
− 7x + 3y

12y

√
2 (mod p)

if p = 7x2 + 6xy + 9y2 6= 7,

(1 +
√

2)
p+1
3

≡





−1 (mod p) if p = 2x2 + 27y2,
1

2
+

5x + y

12y

√
2 (mod p)

if p = 5x2 + 2xy + 11y2 6= 5.
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Example 4.2 Let p > 3 be a prime such that

( p
17) = (p

3). Then

(4 +
√

17)
p−1
3

≡





1 (mod p) if p = x2 + xy + 115y2,

−1

2
+

26x + 3y

102y

√
17(mod p)

if p = 13x2 + 3xy + 9y2 6= 13,

(4 +
√

17)
p+1
3

≡





−1 (mod p) if p = 11x2 + 5xy + 11y2,
1

2
− 10x + y

102y

√
17(mod p)

if p = 5x2 + xy + 23y2 6= 5.
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Theorem 4.2. Suppose m, n, d ∈ Z, m2 −
dn2 = 4 and ord3(m − 2) ≥ ord3n. Let p > 3

be a prime such that p - dn. Let 2α ‖ 4(m−2)
(m−2,n)2

.

Let

k2 =





2 if d ≡ 2,3 (mod 4),

2 if 8 | d− 1, α > 0 and α ≡ 0,1 (mod 3),

1 otherwise,

k3 =

{
3 if 9 - m−2

(m−2,n),

1 if 9 | m−2
(m−2,n)

and k = k2k3.

Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈
Z, b2 − 4ac = −3k2d and (a,6(8 − 4m)/(m −
2, n)2) = 1.
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If p - a, then

(
m + n

√
d

2

)p−(p
3)

3

≡





1 (mod p)

if
( bn

(m−2,n)
+ k(m−2)

(m−2,n)
(1+2ω)

a

)
3

= 1,

1

2

(
− 1− (

p

3
)
2ax + by

kdy

√
d
)

(mod p)

if
( bn

(m−2,n)
+ k(m−2)

(m−2,n)
(1+2ω)

a

)
3

= ω,

1

2

(
− 1 + (

p

3
)
2ax + by

kdy

√
d
)

(mod p)

if
( bn

(m−2,n)
+ k(m−2)

(m−2,n)
(1+2ω)

a

)
3

= ω2.
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If p | a, then

(
m + n

√
d

2

)p−(p
3)

3

≡





1 (mod p)

if
( bn

(m−2,n)
+ k(m−2)

(m−2,n)
(1+2ω)

p

)
3

= 1,

1

2
(−1 + (

p

3
)
b
√

d

kd
) (mod p)

if
( bn

(m−2,n)
+ k(m−2)

(m−2,n)
(1+2ω)

p

)
3

= ω,

1

2
(−1− (

p

3
)
b
√

d

kd
) (mod p)

if
( bn

(m−2,n)
+ k(m−2)

(m−2,n)
(1+2ω)

p

)
3

= ω2.
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Example 4.3 If p is a prime such that p ≡
1 (mod 3) and (7

p) = 1, then

(8 + 3
√

7)
p−1
3

≡





1 (mod p)

if p = x2 + 189y2, 7x2 + 27y2,

−1

2
− 19x + y

42y

√
7 (mod p)

if p = 19x2 + 2xy + 10y2 6= 19,

−1

2
− 25x + 6y

42y

√
7 (mod p)

if p = 25x2 + 12xy + 9y2.
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§5. The criterion for p | U(p−(p
3))/3

(P, Q)

The Lucas sequences Un(P, Q) and Vn(P, Q) are

given by

U0(P, Q) = 0, U1(P, Q) = 1,

Un+1(P, Q) = PUn(P, Q)−QUn−1(P, Q)(n ≥ 1)

and

V0(P, Q) = 2, V1(P, Q) = P,

Vn+1(P, Q) = PVn(P, Q)−QVn−1(P, Q)(n ≥ 1).

It is well known that

Un(P, Q) =





1√
D
{(P +

√
D

2
)n − (

P −√D

2
)n}

if D 6= 0,

n(
P

2
)n−1 if D = 0

and

Vn(P, Q) =
(

P +
√

D

2

)n
+

(
P −√D

2

)n
,

where D = P2 − 4Q.
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For a, b, c ∈ Z, ax2 + bxy + cy2 is called a bi-

nary quadratic form with discriminant d =

b2−4ac. If gcd(a, b, c) = 1, we say that the form

ax2+bxy+cy2 is primitive. Denote the equiv-

alence class containing the form ax2+bxy+cy2

by [a, b, c]. Let H(d) be the form class group

consisting of classes of primitive, integral bi-

nary quadratic forms of discriminant d, and

h(d) = |H(d)|. If n ∈ N is represented by one

form in the class [a, b, c], then n can be repre-

sented by any form in [a, b, c] and we say that

n is represented by [a, b, c].

Problem: Determine all primes p so that p |
U(p−(p

3))/3
(P, Q).

Let Fn = Un(1,−1) be the Fibonacci sequence.

For any prime p > 3 we have ([S2, 1998]):

p | F(p−(p
3))/3

⇐⇒ p = x2 + 135y2 or 5x2 + 27y2,

p | F(p−(p
3))/6

⇐⇒ p = x2 + 540y2 or 5x2 + 108y2.
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Theorem 5.1 ([S8, 2007]). Let p > 3 be a

prime, and P, Q ∈ Z with p - PQ(P2 − 4Q). Let

P2−4Q = df2 (d, f ∈ Z), k = k(P/(P, f), f/(P, f), d)

and

M(P, Q, f)

= {[a, b, c]
∣∣∣∣ [a, b, c] ∈ H(−3k2d), (a,24Q/(P, f)2) = 1,

( bf
(P,f) − kP

(P,f)(1 + 2ω)

a

)
3

= 1}.

(i) M(P, Q, f) is a subgroup of index 3 in H(−3k2d).

(ii) p | U(p−(p
3))/3

(P, Q) if and only if p is repre-

sented by a class in M(P, Q, f).

(iii) p | U(p−(p
3))/6

(P, Q) if and only if (Q
p ) = 1

and p is represented by a class in M(P, Q, f).
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Example 5.1 ([S8]): Let p > 3 be a prime.
Then

p | Up−1
3

(3,−1) ⇐⇒ p = x2 + 351y2,13x2 + 27y2,

p | Up+1
3

(3,−1) ⇐⇒ p = 11x2 + 2xy + 32y2.

§6. Cubic congruences and binary quadratic
forms

Let p > 3 be a prime and a1, a2, a3 ∈ Z. Let
Np(x3+a1x2+a2x+a3) denote the number of
solutions of the congruence x3 + a1x2 + a2x +
a3 ≡ 0 (mod p). Set
(6.1)

P = −2a3
1 + 9a1a2 − 27a3, Q = (a2

1 − 3a2)
3,

D = −P2 − 4Q

27
.

It is known that D is the discriminant of x3 +
a1x2 + a2x + a3 and
(6.2)
Np(x

3+a1x2+a2x+a3) = Np(x
3−3Qx−PQ) (p - Q).
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It is well known that (Dickson, 1906; Skolem,

1952; Sun, 2003)

(6.3)

Np(x
3+a1x2+a2x+a3) =





0 or 3 if (D
p ) = 1,

3 if (D
p ) = 0,

1 if (D
p ) = −1.

Theorem 6.1 ([S8, 2007]). Let p > 3 be a

prime and a1, a2, a3 ∈ Z. Let P and Q be given

by (6.1). Suppose p - PQ(P2 − 4Q) and P2 −
4Q = df2 (d, f ∈ Z). Then the congruence x3+

a1x2+a2x+a3 ≡ 0 (mod p) has three solutions

if and only if p is represented by some class in

M(P, Q, f), where M(P, Q, f) is a subgroup of

H(−3k2d) given as in Theorem 5.1.

Example 6.1. For prime p > 5,

Np(x
3−3x−10) = 3 ⇐⇒ p = x2+162y2,2x2+81y2.
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Theorem 6.2 (Spearman and Williams, 2001)
Let a1, a2, a3 ∈ Z be such that f(x) = x3 +
a1x2 + a2x + a3 is irreducible in Z[x]. Let D

be the discriminant of f(x), and let d be the
discriminant of the cubic field Q(t), where t is
a root of f(x) = 0. Then there is a unique
subgroup J(a1, a2, a3) of index 3 in H(d) such
that if p > 3 is a prime with (D

p ) = 1, then the
congruence f(x) ≡ 0 (mod p) has three solu-
tions if and only if p is represented by one of
the classes in J(a1, a2, a3).

Let us compare Theorem 6.1 with Theorem
6.2. First Spearman and Williams proved The-
orem 6.2 using class field theory, and we prove
Theorem 6.1 using the theory of cubic residues.
Second, the subgroup M(P, Q, f) in Theorem
6.1 is constructed, but Spearman and Williams
only proved the existence of the subgroup J(a1,

a2, a3). Third, in some special cases, the dis-
criminant of corresponding quadratic forms in
Theorem 6.2 seems better than the discrimi-
nant in Theorem 6.1.
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Dedekind(1899-1990): Let m be a cubefree

integer. Then there is a subgroup H of index

3 in H(−27m2) with the property that m is a

cubic residue modulo a prime p ≡ 1 (mod 3) if

and only if p is represented by a class in H.

Theorems 6.1 and 6.2 can be viewed as gen-

eralizations of Dedekind’s result.

§7. Quartic residues and binary quadratic

forms
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Theorem 7.1 ([S6]) Suppose that m′ is the
product of all the distinct odd prime divisors of
m ∈ Z, m = 2αm0(2 - m0) and m∗ = 4m′/(4, m0−
α − 1). If p ≡ 1 (mod 4) is a prime such that
p - m, then m is a quartic residue (mod p) if
and only if p is represented by one class in the
set

G(m) =
{
[a,2b, c]

∣∣∣ gcd(a,2b, c) = 1,

(2b)2 − 4ac = −16m∗2, a > 0,

a ≡ 1 (mod 4), (a, m) = 1,(
(m + 1)b− 2m∗(m− 1)i

a

)

4
= 1

}
.

Moreover, if m and −m are nonsquare integers,
then G(m) is a subgroup of index 4 in the form
class group H(−16m∗2).

Example 7.1 For prime p ≡ 1 (mod 4) with
p 6= 5,

5 is a quartic residue of p ⇐⇒ p = x2 + 100y2,

− 5 is a quartic residue of p

⇐⇒ p = x2 + 400y2,16x2 + 16xy + 29y2.
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Let d > 1 be a squarefree integer, and εd =
(m + n

√
d)/2 be the fundamental unit of the

quadratic field Q(
√

d). Suppose that p ≡ 1 (mod 4)
is a prime such that (d

p) = 1, where (d
p) is the

Legendre symbol. One may ask a question:
how to characterize those odd primes p so that
εd is a quadratic or quartic residue (mod p)?

When the norm N(εd) = (m2 − dn2)/4 = −1,
many mathematicians tried to characterize those
primes p (p ≡ 1 (mod 4), (d

p) = 1) for which εd
is a quadratic residue (mod p). In 1942 Aigner
and Reichardt proved that ε2 = 1 +

√
2 is a

quadratic residue of a prime p ≡ 1 (mod 8)
if and only if p = x2 + 32y2(x, y ∈ Z). In
1969, Barrucand and Cohn rediscovered this
result. Later, Brandler (1973) showed that
for q = 5,13,37 the unit εq is a quadratic
residue of a prime p (p ≡ 1 (mod 4), (q

p) = 1)

if and only if p = x2 + 4qy2(x, y ∈ Z). For
more special results along this line one may
consult [Lem, pp.168-170] (F. Lemmermeyer,
Reciprocity Laws: From Euler to Eisenstein
Springer, Berlin, 2000).
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Theorem 7.2 ([S6, 2005]) Suppose that p ≡
1 (mod 4) is a prime, d, m, n ∈ Z, m2 − dn2 =

−4 and (d
p) = 1. Then (m + n

√
d)/2 is a

quadratic residue (mod p) if and only if p is

represented by one class in the set

S(m, n, d) =
{
[a,2b, c]

∣∣∣ [a,2b, c] ∈ H(−4k2d),

a ≡ 1 (mod 4),
(bn− kmi

a

)
4

= 1
}
,

where

k =





1 if d ≡ 4 (mod 8),

2 if d ≡ 0 (mod 8) or d ≡ 1 (mod 2),

4 if d ≡ 2 (mod 4).

Moreover, if d 6= 1,4, then S(m, n, d) is a sub-

group of index 4 in H(−4k2d).

Example 7.2: Let p be a prime such that

(10
p ) = 1. Then ε10 = 3 +

√
10 is a quadratic

residue of p if and only if p is represented by

x2 + 160y2 or 13x2 + 6xy + 13y2.
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In [S9, 2008], using elementary arguments Z.H.
Sun proved the following general result.

Theorem 7.3. Let p ≡ 1 (mod 4) be a prime
and p = c2+d2 with c, d ∈ Z and 2 - c. Suppose
a, b ∈ Z with (a, b) = 1 and p - a(a2 + b2). Let

δ =





(
bc + ad

a2 + b2
) if 2 | a,

(−1)
d
2(

ac− bd

a2 + b2
) if 2 | b,

(−1)
(bc+ad)2−1

8 (
bc + ad

(a2 + b2)/2
) if 2 - ab.

(i) If (a2+b2

p ) = 1, then

((b +
√

a2 + b2)/2

p

)
≡ δ (mod p).

(ii) If (a2+b2

p ) = −1, then

(
b +

√
a2 + b2

2

)p−1
2 ≡ δ

b−
√

a2 + b2

a
(mod p).
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Example 7.3: Suppose that p ≡ 1 (mod 4) is

a prime and p = c2 + d2 with 2 | d. Then

(
1 +

√
5

2

)p−1
2 ≡





(
c + 2d

5
) (mod p)

if p ≡ 1,9 (mod 20),

(
c + 2d

5
)
c

d
· 1−

√
5

2
(mod p)

if p ≡ 13,17 (mod 20).

In 1974, using the cyclotomic numbers of or-

der 12, E. Lehmer proved that ε3 = 2 +
√

3 is

a quartic residue of a prime p ≡ 1 (mod 12) if

and only if p = x2 +192y2 for some integers x

and y. She also conjectured that ε7 = 8+3
√

7

is a quartic residue of p if and only if p = x2 +

448y2 for some integers x and y. In 1977, P.A.

Leonard and K.S. Williams proved Lehmer’s

conjecture and gave some additional special

results. They barely obtained partial results in

the cases d = 3,7,11,19,43,67,163,6,14,22,38,

86,134. In [S6] we completely solved the prob-

lem by proving the following general result.
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Theorem 7.4 Suppose that p ≡ 1 (mod 4)

is a prime, m, n, d ∈ Z, m2 − dn2 = 4, p - n

and (d
p) = 1. Then (m + n

√
d)/2 is a quartic

residue (mod p) if and only if p is represented

by one class in the set

N0(m, n, d) =
{
[a,2b, c]

∣∣∣ b2 − ac = −δ(n, d)2d,

a ≡ 1 (mod 4), (a, b) = 1,

( bn
(n,m−2) − δ(n, d) m−2

(n,m−2)i

a

)
4

= 1
}
,

where δ(n, d) ∈ {1,2,4,8} is explicitly given by

[S6,Table 4]. Moreover, N0(m, n, d) is a sub-

group of H(−4δ(n, d)2d).

Example 7.4: Let p be an odd prime such

that (15
p ) = 1. Then ε15 = 4+

√
15 is a quartic

residue of p if and only if p = x2 + 960y2 or

20x2 + 20xy + 53y2.
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Let p be an odd prime such that (Q
p ) = (4Q−P2

p ) =

1. It is well known that p | U
(p−(−1

p ))/4
(P, Q)

or p | V
(p−(−1

p ))/4
(P, Q). How to characterize

those odd primes p so that p | U
(p−(−1

p ))/4
(P, Q)?

Suppose that p ≡ 1 (mod 4) (p 6= 5) is a

prime and that {Fn} (Fn = Un(1,−1)) is the

Fibonacci sequence. In 1992 Z.H. Sun and

Z.W. Sun showed that p | Fp−1
4

if and only if

p = x2 + 80y2 or 16x2 + 5y2 with x, y ∈ Z. Let

Pn = Un(2,−1) be the Pell sequence. In 1974

E. Lehmer showed that p | Pp−1
4

if and only if

p = x2 + 32y2 for some x, y ∈ Z.
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Theorem 7.5 Let p be an odd prime, P, Q ∈ Z,
p - Q(P2 − 4Q), and let Q′ be the product of

all distinct odd prime divisors of Q. If Q =

2tQ0(2 - Q0),

δ(P, Q) =





8

(8, P )
if 2 - t,

4 if 2 | t and 2 - P ,
2

(2, Q+1
2 · P

2 − 1)
if 2 - Q and 2 | P ,

2

(2, P
2)

if 2 | t, 2 | Q, 2 | P ,

and k = δ(P, Q)Q′/(P, Q′), then p | U
(p−(−1

p ))/4
(P, Q)

if and only if p is represented by one class in

the set

G(P, Q) =
{
[a,2b, c]

∣∣∣ [a,2b, c] ∈ H(−4k2(P2 − 4Q)),

(a,2Q) = 1,
(kP + bi

a

)
4

= 1
}
.

Moreover, if Q and Q(4Q− P2) are nonsquare

integers, then G(P, Q) is a subgroup of index

4 in H(−4k2(P2 − 4Q)).
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§8. Cubic and quartic congruences modulo

a prime

For integers a1, a2, a3 let {sn} be the third-

order recurring sequence defined by

s0 = 3, s1 = −a1, s2 = a2
1 − 2a2,

sn+3 + a1sn+2 + a2sn+1 + a3sn = 0 (n ≥ 0).

If x3+a1x2+a2x+a3 = (x−x1)(x−x2)(x−x3),

then sn = xn
1 + xn

2 + xn
3.

Theorem 8.1 ([S5, 2003]) Let p > 3 be a

prime, and a1, a2, a3 ∈ Z. If p - a2
1 − 3a2, we

have

Np(x
3 + a1x2 + a2x + a3)

=





3 if sp+1 ≡ a2
1 − 2a2 (mod p),

0 if sp+1 ≡ a2 (mod p),

1 if sp+1 6= a2, a2
1 − 2a2(mod p).
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Moreover, if Np(x3+a1x2+a2x+a3) = 1, then

the unique solution of the congruence x3 +

a1x2 + a2x + a3 ≡ 0 (mod p) is given by

x ≡ 2a1a2 − 9a3 − a1sp+1

−2a2
1 + 3a2 + 3sp+1

(mod p);

if Np(x3+a1x2+a2x+a3) = 0 and p - a2
1−3a2,

then (2sp+2 + a1a2 − 3a3)
2 ≡ D (mod p); if

Np(x3 + a1x2 + a2x + a3) = 3, p - D and x0 =
1
2((

−a3
p )sp+1

2
− a1) 6= −a1 (mod p), then

x ≡ x0,
1

2
(−a1−x0±

d

3x2
0 + 2a1x0 + a2

) (mod p)

are the three solutions of the congruence x3 +

a1x2 + a2x + a3 ≡ 0 (mod p), where d is an

integer such that d2 ≡ D (mod p).

For integers a1, a2, a3 let {un} be the third-

order recurring sequence defined by

u−2 = u−1 = 0, u0 = 1,

un+3 + a1un+2 + a2un+1 + a3un = 0 (n ≥ −2).
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Theorem 8.2 ([S5,2003]) Let p > 3 be a
prime and a1, a2, a3 ∈ Zp. Suppose P = −2a3

1+
9a1a2−27a3, Q = (a2

1−3a2)
3 and D = −(P2−

4Q)/27 and PQ 6≡ 0 (mod p). Then

Np(x
3 + a1x2 + a2x + a3)

=





3 if Du2
p−2 ≡ 0 (mod p),

0 if Du2
p−2 ≡ (a2

1 − 3a2)
2 (mod p),

1 if Du2
p−2 6≡ 0, (a2

1 − 3a2)
2(mod p).

Theorem 8.3 ([S17,2016]) Let p > 3 be a
prime and a1, a2, a3 ∈ Zp. Suppose P = −2a3

1+
9a1a2 − 27a3, Q = (a2

1 − 3a2)
3 and PQ(P2 −

4Q) 6≡ 0 (mod p). Then Np(x3 + a1x2 + a2x +
a3) = 1 if and only if

x ≡ P

3(a2
1 − 3a2)

[p/3]∑

k=0

(3k

k

)(
4Q− P2

27Q

)k
−a1

3
(mod p)

is a solution of the congruence x3 + a1x2 +
a2x + a3 ≡ 0 (mod p). If P2 6≡ Q,3Q (mod p),
then Np(x3 + a1x2 + a2x + a3) = 3 if and only

if
∑[p/3]

k=1

(
3k
k

)
(4Q−P2

27Q )k ≡ 0 (mod p).



Theorem 8.4 ([S5, 2003]) Let p > 3 be a

prime, a, b, c ∈ Z, and let {Sn} be given by

S0 = 3, S1 = −2a, S2 = 2a2 + 8c,

Sn+3 = −2aSn+2 + (4c− a2)Sn+1 + b2Sn (n ≥ 0).

If p - a2 + 12c, then

Np(x
4 + ax2 + bx + c) = 1

⇐⇒ Sp+1 ≡ a2 − 4c (mod p).

If Np(x4 + ax2 + bx + c) = 1, then the unique

solution of the congruence x4 + ax2 + bx + c ≡
0 (mod p) is given by

x ≡
a2 − 4c− S2

p+1
2

4b
(mod p).
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Theorem 8.5 Let p > 3 be a prime, a, b, c ∈ Z,
D(a, b, c) = −(4a3 + 27b2)b2 + 16c(a4 + 9ab2 −
8a2c + 16c2) and p - bD(a, b, c). Then Np(x4 +

ax2 + bx + c) = 0 if and only if there exists an

integer y such that y3+2ay2+(a2−4c)y−b2 ≡
0 (mod p) and (y

p) = −1. When Np(x4+ax2+

bx + c) > 0 we have

Np(x
4 + ax2 + bx + c)

= Np(y
3 + 2ay2 + (a2 − 4c)y − b2) + 1.

(T. Skolem, 1952; Z.H. Sun, 2003)
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§9. Conjectures for U
(p−(−1

p ))/4
(P, Q) (mod p)

and q[p/8] (mod p)

In 1980 and 1984 Hudson and Williams proved
the following result.

Theorem 9.1. Let p ≡ 1 (mod 24) be a prime
and hence p = c2 + d2 = x2 + 3y2 for some
c, d, x, y ∈ Z. Suppose c ≡ 1 (mod 4).

(i) ([HW1]) If c ≡ ±(−1)
y
4 (mod 3), then 3

p−1
8 ≡

±1 (mod p).

(ii) ([H]) If d ≡ ±(−1)
y
4 (mod 3), then 3

p−1
8 ≡

±d
c (mod p).

Hudson and Williams proved Theorem 9.1(i)
by using the cyclotomic numbers of order 12,
and Hudson proved Theorem 9.1(ii) using the
Jacobi sums of order 24.

Now we pose some conjectures similar to The-
orem 9.1.
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Conjecture 9.1. Let p ≡ 1 (mod 4) and

q ≡ 3 (mod 8) be primes such that p = c2 +

d2 = x2 + qy2 with c, d, x, y ∈ Z and q | cd.

Suppose c ≡ x ≡ 1 (mod 4), y = 2βy0 and

y0 ≡ 1 (mod 4).

(i) If p ≡ 1 (mod 8), then

q
p−1
8 ≡




±(−1)

y
4 (mod p) if x ≡ ±c (mod q),

∓(−1)
q−3
8 +y

4
d

c
(mod p) if x ≡ ±d (mod q).

(ii) If p ≡ 5 (mod 8), then

q
p−5
8 ≡





±y

x
(mod p) if x ≡ ±c (mod q),

∓(−1)
q−3
8

dy

cx
(mod p) if x ≡ ±d (mod q).

Conjecture 9.2. Let p ≡ 1 (mod 4) and

q ≡ 7 (mod 16) be primes such that p =

c2 + d2 = x2 + qy2 with c, d, x, y ∈ Z and q | cd.

Suppose c ≡ x ≡ 1 (mod 4), y = 2βy0 and

y0 ≡ 1 (mod 4).
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(i) If p ≡ 1 (mod 8), then

q
p−1
8 ≡

{
(−1)

y
4 (mod p) if q | d,

−(−1)
y
4 (mod p) if q | c.

(ii) If p ≡ 5 (mod 8), then

q
p−5
8 ≡





y

x
(mod p) if q | d,

−y

x
(mod p) if q | c.

Conjecture 9.3. Let p ≡ 1 (mod 4) and q ≡
15 (mod 16) be primes such that p = c2+d2 =
x2 + qy2 with c, d, x, y ∈ Z and q | cd. Suppose
y = 2βy0 and x ≡ y0 ≡ 1 (mod 4).

(i) If p ≡ 1 (mod 8), then q
p−1
8 ≡ (−1)

y
4 (mod p).

(ii) If p ≡ 5 (mod 8), then q
p−5
8 ≡ y

x (mod p).

In [S12] Z.H. Sun proved Conjectures 9.1-9.3
on condition that (c, x + d) = 1 or (d, x + c) =
2s.
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Conjecture 9.4. Let p ≡ 3 (mod 8) be a

prime and k ∈ Z with 2 - k. Suppose p =

x2 + (k2 + 1)y2 for some x, y ∈ Z. Then

Vp+1
4

(2k,−1) ≡





−(−1)
(p−1

2 y)2−1
8 2

p+1
4 (mod p)

if k ≡ 5,7 (mod 8),

(−1)
(p−1

2 y)2−1
8 2

p+1
4 (mod p)

if k ≡ 1,3 (mod 8).

In the case k = 1 Conjecture 4.1 was proved by

the author in [S10,2009] and C.N. Beli (Acta

Arith. 137(2009), 99-131).
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Conjecture 9.5. Let p ≡ 3 (mod 4) be a

prime and k ∈ Z with 2 - k. Suppose 2p =

x2 + (k2 + 4)y2 for some x, y ∈ Z.

(i) If k ≡ 1,3 (mod 8), then

Vp+1
4

(k,−1)

≡





(−1)
(p−1

2 y)2−1
8 (−2)

p+1
4 (mod p)

if k ≡ 1,11 (mod 16),

−(−1)
(p−1

2 y)2−1
8 (−2)

p+1
4 (mod p)

if k ≡ 3,9 (mod 16).

(ii) If k ≡ 5,7 (mod 8), then

Vp+1
4

(k,−1) ≡





(−1)
(p−1

2 y)2−1
8 2

p+1
4 (mod p)

if k ≡ 5,15 (mod 16),

−(−1)
(p−1

2 y)2−1
8 2

p+1
4 (mod p)

if k ≡ 7,13 (mod 16).
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In the case k = 1 Conjecture 9.5 was proved

by C.N. Beli in 2009.

Conjecture 9.6. Let p ≡ 1 (mod 4) be a

prime, b ∈ Z, 2 - b and p = c2 + d2 = x2 +(b2 +

4)y2 6= b2 + 4 for some c, d, x, y ∈ Z. Suppose

c ≡ 1 (mod 4) and all the odd parts of d, x, y

are numbers of the form 4k + 1.

(i) If 4 - xy, then

Up−1
4

(b,−1) ≡





(−1)
d
4
2y

x
(mod p)

if 2 ‖ x and b ≡ 1,3 (mod 8),

−(−1)
d
4
2y

x
(mod p)

if 2 ‖ x and b ≡ 5,7 (mod 8),
2dy

cx
(mod p)

if 2 ‖ y.
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(ii) If 4 | xy, then

Vp−1
4

(b,−1) ≡





2(−1)
d+y
4 (mod p) if 4 | y,

−2(−1)
x
4
d

c
(mod p)

if 4 | x and b ≡ 1,3 (mod 8).

2(−1)
x
4
d

c
(mod p)

if 4 | x and b ≡ 5,7 (mod 8).

Conjecture 9.6 has been checked for b < 60
and p < 20000. When p ≡ 1 (mod 8), b =
1,3 and 4 | y, the conjecture Vp−1

4
(b,−1) ≡

2(−1)
d+y
4 (mod p) is equivalent to a conjecture

of E. Lehmer.

In [S13] Z.H. Sun proved Conjecture 9.6 on
condition that (c, x + d) = 1 or (d, x + c) = 2s.

Conjecture 9.7. Let a ∈ Z, a 6= 0 and let p ≡
1 (mod 4) be a prime such that p = c2 + d2 =
x2+(4a2+1)y2 with c, d, x, y ∈ Z, c ≡ 1 (mod 4)
and p 6= 4a2 + 1. Suppose d = 2rd0, y = 2ty0
and d0 ≡ y0 ≡ 1 (mod 4).

50



(i) If p ≡ 1 (mod 8), then

Up−1
4

(4a,−1) ≡





(−1)
a+1
2 +d

4+
x−2
4

y

x
(mod p)

if 2 - ay,

0 (mod p) if 2 | ay

and

Vp−1
4

(4a,−1) ≡





2(−1)
d
4+

a
2y+xy

4 (mod p)

if 2 | a,
2(−1)

d
4+

y
4 (mod p)

if 2 - a and 2 | y,
0 (mod p) if 2 - ay.
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(ii) If p ≡ 5 (mod 8), then

Up−1
4

(4a,−1) ≡





(−1)
a
2+

x−2
4

dy

cx
(mod p)

if 2 | a and 2 - y,

(−1)
x+1
2

dy

cx
(mod p)

if 2 | a and 2 | y,
dy

cx
(mod p)

if 2 - a and 2 | y,
0 (mod p) if 2 - ay

and

Vp−1
4

(4a,−1) ≡





0 (mod p) if 2 | ay,

2(−1)
a−1
2 +x

4
d

c
(mod p)

if 2 - ay.

In [S13] Z.H. Sun proved Conjecture 9.7 on

condition that (c, x + d) = 1 or (d, x + c) = 2s.

52



Conjecture 9.8 ([S10]). Let p ≡ 1 (mod 4)

be a prime, b ∈ Z, b ≡ 2 (mod 4), p 6= b2/4 + 1

and p = c2 + d2 = x2 + (1 + b2/4)y2 for some

c, d, x, y ∈ Z. Suppose c ≡ 1 (mod 4), x = 2αx0,

y = 2βy0 and x0 ≡ y0 ≡ 1 (mod 4). Then

Up−1
4

(b,−1) ≡
{

(−1)
b−2
4 +d

4
y

x
(mod p) if 2 ‖ y,

0 (mod p) if 4 | y
and

Vp−1
4

(b,−1) ≡
{

0 (mod p) if 2 ‖ y,

2(−1)
d
4+

y
4 (mod p) if 4 | y.

In [S14] Z.H. Sun proved Conjecture 9.8 on

condition that (c, x + d) = 1 or (d, x + c) = 2s.
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§10. Evaluation of Vp(x4 + ax2 + bx)

For a positive integer m and given polyno-

mial f(x) with integral coefficients, denote the

number of incongruent residues of f(x)(x ∈ Z)
modulo m by Vm(f(x)). That is,

Vm(f(x)) =
∣∣∣
{
c

∣∣∣ c ∈ {0,1, . . . , m− 1},
f(x) ≡ c (mod m) is solvable

}∣∣∣.

For any odd prime p we have Vp(x2) = p+1
2 .

Let p > 3 be a prime and a1, a2, a3 ∈ Z. In

1908 R.D. von Sterneck proved that if a2
1 6≡

3a2 (mod p), then

Vp(x
3 + a1x2 + a2x + a3) =

2p + (p
3)

3
.
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Theorem 10.1 ([S7]). Let p ≡ 2 (mod 3) be

an odd prime, b ∈ Z and p - b. Then

Vp(x
4 + bx) =

[
5p + 7

8

]
.

Theorem 10.2 ([S7]). Let p ≡ 1 (mod 3)

be a prime, p = A2 + 3B2(A, B ∈ Z), A ≡
1 (mod 3), b ∈ Z and p - b.

(i) If p ≡ 1 (mod 12), then

Vp(x
4+bx) =





1

8
(5p + 9− 6(−1)

p−1
12 )

if 2b is a cubic residue (mod p),
1

8
(5p + 3± 6B)

if (2b)
p−1
3 ≡ 1

2

(
− 1∓ A

B

)
(mod p).
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(ii) If p ≡ 7 (mod 12), then

Vp(x
4+bx) =





1

8
(5p + 7 + 6(−1)

p−7
12 − 4A)

if 2b is a cubic residue (mod p),
1

8
(5p + 1 + 2A)

if 2b is a cubic nonresidue (mod p).

Theorem 10.3 ([S7]). Let p be a prime
greater than 3.

(i) If p ≡ 1 (mod 12) and p = A2 + 3B2 =
c2 + d2 with 2 | d, c + d ≡ 1 (mod 4) and
A ≡ 1 (mod 3), then

Vp(x
4 − 3x2 + 2x)

=





1

8
(5p + 3 + 4δ(p)− 2A− 2c) if 3 | c,

1

8
(5p + 3 + 4δ(p)− 2A + 2c) if 3 | d,

where

δ(p) =





1 if p ≡ 13 (mod 24),

0 if p ≡ 1 (mod 24) and B ≡ d (mod 8),

2 if p ≡ 1 (mod 24) and B 6≡ d (mod 8).
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(ii) If p ≡ 5 (mod 12) and p = c2 + d2 with
2 | d, c + d ≡ 1 (mod 4) and c ≡ d (mod 3),
then

Vp(x
4 − 3x2 + 2x) =

1

8

(
5p + 3− 2d

)
.

(iii) If p ≡ 7 (mod 12) and p = A2 + 3B2 with
A ≡ 1 (mod 3), then

Vp(x
4 − 3x2 + 2x) =

1

8

(
5p + 1− 2A

)
.

(iv) If p ≡ 11 (mod 12), then

Vp(x
4 − 3x2 + 2x)

=





5p + 1

8
+

1

2

(
1− (

3
p+1
4 + 1

p
)
)

if 24 | p− 11,

5

8
(p + 1) if 24 | p− 23.

Theorem 10.4. Let p > 3 be a prime, and
a, b ∈ Z with p - b. Then

∣∣∣∣Vp(x
4 + ax2 + bx)− 5p

8

∣∣∣∣ ≤
1

2

√
p +

15

8
.
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