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Let p be a prime greater than 3 and let a be a rational p-adic integer. In this paper we
try to determine Z[p/ 3 ( ) (mod p), and reveal the connection between cubic congruences

and the sum Z[p/ i ( )a , where [z] is the greatest integer not exceeding x. Suppose that
ai, a2, as are rational p-adic integers, P = —2a} + 9ajas — 27a3, Q = (a? — 3as)® and PQ(P? —
Q)(P? —3Q)(P* — 4Q) # 0 (mod p). In this paper we show that the number of solutions of
the congruence z*+a;22 + asxr +a3 = 0 (mod p) depends only on Zp/g] (k)(4g7_52)k (mod p).
Let ¢ be a prime of the form 3k 4+ 1 and so 4q = L* + 27TM? with L, M € Z. When p # q

and p 1 LM, we establish congruences for ,[f/?l’ (k)( “)% and Z[p/?’] ( )( ) modulo p. As

a consequence, when q #Z 9M? 27M? (mod p) we Shovv that 23 — gz — ¢M = 0 (mod p) has
three solutions if and only if p is a cubic residue of q.
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1. Introduction

Congruences involving binomial coefficients are interesting, and they are concerned with
Fermat quotients, Lucas sequences, Legendre polynomials, binary quadratic forms and cubic
congruences. Let Z be the set of integers, and for a prime p let Z, denote the set of those
rational numbers whose denominator is not divisible by p. Let p > 5 be a prime. In [12] Zhao,
Pan and Sun proved that

_ (3:) ok = g((—m(pl)/? —1) (mod p).

k=1
In [10] the author’s brother Z.W. Sun investigated (3:) a® (mod p) for a € Z,. He gave
explicit congruences for a = —4, ¢, 1,4 & & 2 2.
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Suppose that p > 3 is a prime and k € {1,2,...,p— 1}. It is easy to see that p | ( ) if and
onlyif§<k<§or%<k<p. Thus, for any a € Z,,

p=l g L /3 g, . [2p/3] (31{:) .
;<k>a ;<k>a +k(pz+1)/2 L)@ (mod p),
where [z] is the greatest integer not exceeding x. In [9] the author investigated congruences
for [p/ 3] (k )a modulo p. In this paper we reveal the connection between cubic congruences
and the sum Z[p/g ( ) . Let p be an odd prime. For m € Z let ( ) be the Legendre symbol.
For m,n € Z with p { n define (mT/") = (}), where z € Z satisfies the congruence nz = m

(mod p). Then (mT/n) = (%/"2) = (7). For p > 3 and ap,a1,a2,a3 € Z, with ag # 0

(mod p) let N,(agz® 4+ a12? + asx + as) denote the number of solutions of the cubic congruence
aor® + a12? + asx + a3 = 0 (mod p). Tt is well known (see for example [2,4,5] and [7, Lemma
2.3]) that

D

(1.1) Ny(2° + a1 + agr + a3) = 1 <= (—) =-1,
p

where D is the discriminant of 23 + a;2% + asx + a3 given by

(1.2) D = aa; — 4a3 — 4ajasz — 27a3 + 18a,aas.

In this paper we establish many congruences for Lp:/ ?] (Skk) a® (mod p). Here are some
typical results:

x Let p > 3 be a prime and a4, az, a3 € Z,. Suppose P = —2a}+9a1a2—27a3, Q = (a3 —3a2)?
and PQ(P? — Q)(P? —3Q)(P? — 4Q) # 0 (mod p). Then N,(z* + a2 + asx + a3) = 3 if and
only if S 173 (% )(%)k =0 (mod p).

* Let p > 3 be a prime, n € Z, and 3n+ 2 # 0 (mod p). Then

/3
2 (3:) (w*(n+ 1)) 23(22;12)) <<(1 i 3n)) ~1)  (mod p)

k=1 p

x Let p be a prime of the form 3k + 1, m € Z, and m # 1, -2, —1 (mod p). Then

/3 /o )
2 ( k ) (=3(m = 1)(m +2))*

k=1
0 (modp) if (253)7 =1 (mod p).
= m —1,p=1 . i p—1
—2m+1(m+1+( +2)3) (mod p) 1f<m—+§)3 #%1 (mod p).

x Let ¢ be a prime of the form 3m + 1 and so 4¢ = L? + 27M? with L,M € Z and L = 1
(mod 3). Let p be a prime with p # 2,3,¢ and pt L. Then

g?j] (Bk) M2k 0 (mod p) if ps =1 (mod q),
=9y 3FIM/L oo a=l
~\k/) ¢ #/ (mod p) ifp 7= 1igM/L (mod q)
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Let w = %?3 For a prime p > 3 and a,b € Z, let (“t’b“’)g be the cubic Jacobi symbol

defined in [6]. For ¢ € Z, with ¢* +3 # 0 (mod p) and r € {0,1,2} following [6] we define
¢ € C,(p) if and only if (C“”“’)s = w". According to [6], C.(p) (r = 0,1,2) play a central role in

the theory of cubic residues and nonresidues. In this paper, using the sum >, lp/3] ( ' ) (9(624 +3))k

we give a simple criterion for ¢ € C,.(p). In particular, for ¢ Z 0,£1 (mod p), ¢ € Cy(p) if and
k
only if S21/3 (% )(m) =0 (mod p).
For a,b,c € Z and a prime p, if there are integers x and y such that p = ax? + bay + cy?,
throughout this paper we briefly write that p = az? + bry + cy?.

2. Main results

For any numbers P and @, let {U, (P, @)} be the Lucas sequence given by

UO(P7 Q) = Oa Ul(PaQ) = 17 Un+1(P7Q) = PUn(P7 Q) - QUn—l(Pv Q) (n Z 1)
It is well known (see [11]) that

Un(P,Q)
(2.1) _ p21_4Q{(P+ 1232—4Q>"_ ( P2 > } —4Q #0,
n(?)”‘l it P — 40 = 0.

Let U, = U,(P, Q). Using (2.1) we see that (see [11, (4.2.24) and (4.2.26)]) for any positive
integer n,

(2.2) Upi1Un-1 — U2 = —Q"'  and  Uspyq = Upy — QU

Lemma 2.1 ([9, Lemma 3.3]). Let p > 3 be a prime, P,Q € Z, and PQ(P? —4Q) £ 0
(mod p). Then
=B P2 —4Q
Q" U, (P.Q) (modp) if (T>
Ugz)1 (P, Q) = ’

—(2)
3

-Q Up- )| (P Q) (mod p) Zf(
Lemma 2.2. Let p > 3 be a prime cmd P.Q € Z, with PQ) # 0 (mod p). Then

U, x)(P.Q)=0 (modp) implies Uspzja(P,Q) = (—Q)5  (mod p).

=1,

4Q) ~1.

Moreover, if P? —3Q # 0 (mod p), then
Uppy41(P,Q) = (@51 (mod p)  implies U,_z,(P,Q)=0 (mod p).
3

Proof. Set Uy, = Up,(P,Q) and n = (p — (%))/3. Then 2[§] +1 = p — n. We first assume
U, =0 (mod p). If p=1 (mod 3), by (2.2) we have U, 1(PU, — Up1)/Q — U2 = —Q"!
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and so U2, = Q" (mod p). Hence Uzyiq = — QU2 =Q" = (—Q)" (mod p). If p=2
(mod 3), by (2.2) we have (PU QUn 1)Un-1 — U2 —Q" ' and so U?_; = Q" ? (mod p).
Thus, Upp41 = Usp1 = — QU? —Q-Q" 2= (-5 (mod p).

Now we assume that P2 3Q # O (mod p) and Usz 1 (P, Q) = (— Q)5 (mod p). We claim
that P2 —4Q # 0 (mod p). If P? —4Q =0 (mod p), by (2.1) we have

Usiz)+1 = Uz v (P P?/4) = ( [§}+1> <§P>2[§]
- (] )= Yo £ (ot

which contradicts the assumption. Hence P? —4Q # 0 (mod p). Suppose p = 1 (mod 3). By
Lemma 2.1 we have

=-Q* ' (modp) for (PQ_—ZLQ) =1,
(2.3) b

P?—4
Uni1 = —Q*  (mod p) for (TQ) =—1.
When (P p4Q) = —1 we have
Q" =Uspy1 = —QU?= Q"™ - QU? (mod p).

As Q" = Qrt =1 (mod p) we have Q™ = Q" (mod p). Thus QU2 = 0 (mod p) and so
U, =0 (mod p). When (P 4Q) = 1 we have

Q" = Uspyr = Uy — QU2 = (PU, — QU,—1)* — QU
= (PU, +Q™)* = QU; = Up((P* = Q)U, + 2PQ*") + Q" (mod p).

As Q™ = Q" (mod p) we have
Un((P* = Q)U, +2PQ*") =0 (mod p).

If P2=Q (mod p), as pt PQ we have U, =0 (mod p). Now assume P> — Q # 0 (mod p). If
U, = _2pQr (mod p), then

P?-Q
22n 2
Uiy = PU, - QU, , = — QPP QQ + QQn _ %Q% (mod p).
Hence
- _ QP oy APPQM
—Q" ' = Uy U, — U? = O- P2Q2 (- ) - (P? = Q)?
In—1
~ (P~ @ —APQ) (mod )



As Q1 = Q™! (mod p) we must have
P*— Q* —4P’Q = —(P* - Q)* (mod p).

That is, 2P?(P? — 3Q) = 0 (mod p). This contradicts the assumption. Thus, (P? — Q)U, +
2PQ* #0 (mod p) and so U, =0 (mod p).

Now we assume p = 2 (mod 3). As U1 = Uyz)a
Lemma 2.1 we have

(—Q) = —Q"™* (mod p), by

2
U1 = Q™2 (mod p) for (P—4Q =
(2.4) o ’ 10
Upp1 = Q™' (mod p) for (——) =
p

When (%) = 1 we have

Q"' =Upy =U? - QU? | =U? - Q" * (mod p).

As Qi =3-(=1) = @3n=2 = QP~! =1 (mod p) we have Q"3 = Q"' (mod p). Thus U? =

(mod p) and so U,, =0 (mod p). When (PZ;%Q) = —1 we have

P n - YUn 2
_anl = Uanl — Ug o QUn2_1 _ Ufl . Q( U U +1) —

(PUn . QQn—l)?

=U? -
Q " ¢

) 0P - Q)[g —2PQ¥ 1) Q"3 (mod p).

As Q3 = Q" ! (mod p) we have

U.(P? = Q)U, — 2PQ*" ') =0 (mod p).

If P?—Q =0 (mod p), as pt PQ we have U, =0 (mod p). Now assume P2 —Q # 0 (mod p).

Iftu, = 21;?1;1 (mod p), then

PUy = Unpy _ P 2PQ" B 2P? — (P2 - Q)
B Q S Q PP-Q

(mod p).

n- (22— (PP—Q)  4P%Q
_Q 1 Un+1Un71 — U,Ql = Q4 3( P2(_ Q ) B (PQ _ Q)2)
anl

(P2 — Q)Q(_(P2 —Q)*+2P*(P?-3Q)) (mod p).
This yields 2P%(P?—3Q) = 0 (mod p), which contradicts the assumption. Thus, (P2 —Q)U,, —
2PQ*1 #£0 (mod p) and so U, =0 (mod p).

Summarizing all the above we prove the lemma.
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Lemma 2.3 ([9, (3.1)]. Let p > 3 be a prime and P,Q € Z, with PQ # 0 (mod p). Then

Uaggya (P.Q) = (Q)1 ]f () (g)" ot

From (2.1) we know that for odd m,

1+ o \m m
st () - ()
{—2-(—3)’"21 if 3 | m,

(=3)""z if 34 m.

Thus, putting P =1 and () = % in Lemma 2.3 we see that

1 2 g 1 B 1, 2(—3)715) (modp) ifp=+4 (mod9),
(—3)L5! kz:; (k ) gk = Ui (1 5) - { (=3)~) (mod p) if p#£+4 (mod 9).

Hence,

[p/3] e
3N 1 (-3 (modp) ifp=+4 (mod?9),
(25) ; ( k ) ok — { 0 (mod p) if p#£+4 (mod9).

)

Lemma 2.4. Let p > 3 be a prime and P,Q € Z, with PQ(P? — 3Q)(P?* — 4Q) # 0

(mod p) Then the following statements are equivalent:

) Up—(2))/3(P, Q) = 0 (mod p).

(i
i) £ (¥)(F5)" =0 (mod p).

(iii) The congruence * — 3Qx — PQ =0 (mod p) has three solutions.
p

roof. By Lemmas 2.2 and 2.3,

Up-y(P,Q) =0 (mod p) <= Upzya(P,Q) = (=Q)1) (mod p)
3
[p/3] 2
3k\ y P7\F
= > () x)
Thus (i) is equivalent to (ii). By [8, (7.4)] or [6, Corollary 6.3], (i) is equivalent to (iii).

Theorem 2.1. Let p > 3 be a prime and a € Z, with a # 0, } (mod p). Then the
following statements are equivalent:

(i) “’/3}(,6) k=0 (mod p),

(ii) Up—(2y)/3(9a,3a) =0 (mod p),
(i) (27a 2+3m)< G _
(

(

0 (mod p).

’9’27’27

mod p),
iv) az® —x — 1 =0 (mod p) has three solutions,

v) [p/3 (k)(w)’“ =0 (mod p),

27



(vi) (27a — 4)2® + 32z +1 =0 (mod p) has three solutions.
Proof. Taking P = 9a and ) = 3a in Lemma 2.4 we see that (i) and (ii) are equivalent. By
(1),

(mod p).

9a + /(9a)? — 4 - Bay i
(9a,3a) =0 (mod p) < ( a+ty(%) a) 1

Up*(%) 5
9a — 1/(9a)?> — 4 - 3a

3

9a +v8la? —12a  (9a+ v8la? —12a)*  27a — 24 3v/8la? — 12a
9a —v/81la? — 12a 12a B 2 ’

we see that (ii) is equivalent to (iii). For z = 3ay we see that
2* —3-3ax — 9a - 3a = (3ay)® — 9a - 3ay — 27a* = 27a*(ay® —y — 1).

Thus, 23 — 3 - 3axz — 9a - 3a = 0 (mod p) has three solutions if and only if ay® —y — 1 = 0
(mod p) has three solutions. Hence applying Lemma 2.4 we see that (ii) is equivalent to (iv).
It is clear that

27(5 — —2+3\/81 )? = 12(3 —a) 27q — 2+ 3y8la% — 124

2
_2—27a+ 3\/81a2 —12a 27a — 2+ 3v8la? — 12a ]
B 2 2 -
Thus,
4 4 4 p—(2
<27(ﬁ —a) =24 3/81(3 — 0)? — 12(% — a) D) L ety
27a — 2 + 3v/81a? — 120
= ( 5 ) =1 (mod p)
Since 3= —a # 0,4, 3 (mod p) and (iii) is equivalent to (i) and (iv), using the above we see
that (111) is equivalent to (v) and that
ar® —2—1=0 (mod p) has three solutions
4
= (2—7 —a)r —2—1=0 (mod p) has three solutions
4
= (2—7 —a)(3z)> =32z —1=0 (mod p) has three solutions

< (27a—4)2* +3r+1=0 (mod p) has three solutions.

Thus (iv) and (vi) are equivalent. Now the proof is complete.
Lemma 2.5. Let p > 3 be a prime and a € Z, with a(27a —4) # 0 (mod p). Then the
cubic congruence (27a — 4)x® + 3x + 1 =0 (mod p) has one and only one solution if and only

if v = /3] (,C )a (mod p) is a solution of the congruence.
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Proof. As 27a —4 # 0 (mod p) and (27a — 4)?((27a — 4)23 4+ 3z + 1) = ((27a — 4)z)® +
3(27a — 4) - (27a — 4)x + (27a — 4)?, we see that

N,((27a — 4)2° + 3z + 1) = N,(2° + 3(27a — 4)x + (27a — 4)?).

By (1.2), the discriminant of 2® + 3(27a — 4)x + (27a — 4)? is 27%a(4 — 27a)?. If N,((27a —
423 + 3z +1) = 1, by (1.1) and the above we must have (”MP#“)) —1. Now applying |9,
Theorem 3.10] we see that the unique solution of (27a —4)x3 + 3z +1 =0 (mod p) is given by
T = Lpi 3] (3:) a® (mod p). Conversely, suppose that z = Lp:/ f’)] (3:) a® (mod p) is a solution
of the congruence (27a — 4)x® + 3z + 1 = 0 (mod p). By (2.5) and [9, Theorem 3.2] we have
a# 5,5 (mod p). If N,((27a —4)2® + 3z + 1) = 3, by Theorem 2.1 we have S/ (*F)ak =
(mod p). But x = 1 (mod p) is not a solution of the congruence (27a — 4)z® +3z+1 =0
(mod p). This contradicts the assumption. Hence N,((27a — 4)a® 4+ 3z + 1) = 1. This proves
the lemma.

Remark 2.1 Let p > 3 be a prime, a € Z, and (4727‘1)) —1. By [9, Theorem 3.10],

x = ,E‘Zg] (k)a (mod p) is the unique solution of the congruence (27a —4)z® + 3z +1 =0

(mod p). Hence S /% (*)a* # 0 (mod p).
Theorem 2.2. Let p > 3 be a prime and ay, as, a3 € Z,. Suppose P = —2a?+9aas —27as,
Q = (a} — 3az)? and PQ(P* —4Q) # 0 (mod p). Then N,(2* + a12* + asx + a3) = 1 if and

only if s
P YRk 4Q - P2\ oa
x:3(a%—3a2);(l€>< 27Q >_§ (mod p)

is a solution of the congruence x>+ a12* + asx+a3 = 0 (mod p). If P2 # Q,3Q (mod p), then
Ny(2® + a12* + asx + az) = 3 zf and only zfz[p/g § )(4Q Pz)k =0 (mod p).
_r

27Q
Proof. Set x = %@)y — 4. Then 2® + a12% 4+ apx + a3 = — 5= (— %Zy?’ + 3y + 1). Thus,

3(

N,y (2% + a12* + agx + as)

P? 4Q — P?
=N, (- 53:34—33:—1—1) =N, ((27- 50 —4)a® + 30+ 1).
From the above and Lemma 2.5 we see that
Ny(2® + a12* + agz + az) = 1
P2

— Np<—ay3+3y+1> =1

[p/3] 2 2

AQ — P2\F P

= y= ; ( ) ) (6227—62) (mod p) satisfying — 51/3 +3y+1=0 (mod p)

[p/3]
P 3k\ 74Q — P2\k
= r= 05— —) - = d
g 3(a%—3a2)k§(k)< 27Q > g (modp)
satisfying 2° + a12® + agz + a3 =0 (mod p).
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If P2 Q,3Q (mod p), from the above and Theorem 2.1 we see that

2* +a12* +ayr +a3 =0 (mod p) has three solutions

1Q — P?
= (27 : 6227—62 - 4) 2> +3r+1=0 (modp) has three solutions
[p/3] 2
3k\ /4Q — P\
—— ) =0 d p).
(:’;(kx 270 ) (mod p)
This completes the proof.
Corollary 2.1. Let p > 3 be a prime.
(i) If p # 11, then l[ffl’] (3:)(—%2)’“ = 0 (mod p) if and only if p = 2* + 162y or p =

227 + 81y°.

(ii) E/?{] (*)(8)r =0 (mod p) if and only if p = x* +xy+115y* or p = 11a?+5xy+11y2.

(iii) If p # 5,241, then Z[p/g (3F)(40)k =0 (mod p) if and only if p = 2° + zy + 277y? or
p =172+ Toy + 174>,

Proof. By [8, Corollary 7.4(i)], N,(2*—32—10) = 3 if and only if p = z24+162y* or 22*+81y.
By Theorem 2.2, for p # 5,11,97, N,(2* — 3z — 10) = 3 if and only if ZWS} (% )(—Q)k =

9
(mod p). Thus (i) holds for p 7§ 5,11,97. For p = 5,97 using Maple we see that (i ) is also true.

In the same way, from Theorem 2.2 and 8, Corollary 7.4] we deduce (ii) and (iii).
Theorem 2.3. Let p > 3 be a prime, n € Z, and 3n+2 # 0 (mod p). Then

3 (oot = g L (=) <1) o)

k=1 p

Proof. Clearly the result is true for n = 0,—1 (mod p). Now assume n(n+1) Z 0 (mod p).
If 3n — 1 =0 (mod p), by Lemma 2.3 we have

% (3:) (Wn+ 1) = % <3/f> (%)k = (-1 (2,1) — 1

7 = (—1)l5! (2 [2} i 1) 1 3(n+1)

2
37 2Bn+2) (mod p).

Thus the result is true for n = % (mod p). From now on we assume 3n — 1 # 0 (mod p). It

is clear that 27n%*(n + 1) —4 = (3n + 2)*(3n — 1). Set a = n*(n + 1). Then a(27a —4) £ 0
(mod p). By [8, (7.4)],

U,—»(9a,3a) =0 (mod p)
3

<= 2° —9ax —27a* =0 (mod p) has three solutions

<= (3az)® —9a-3ax — 27a* =0 (mod p) has three solutions
<= ar’—x—1=0 (modp) has three solutions

<= (n+1)(nz)> —nr —n =0 (modp) has three solutions



(n+1)2> —2—n=0 (mod p) has three solutions
(z—1)((n+1)(2* +2)+n)=0 (mod p) has three solutions

<~
<~
— (x—1) ((:1: + 1)2 + M) =0 (mod p) has three solutions
2’ T An+1)
— ((1 +n)(1 —3n)> 1
p

Hence, if (H"lesn)) = 1, then Uy (2))3(9a,3a) = 0 (mod p) and so Uyrjy1(9a,3a) =
(—3a)P/3l (mod p) by Lemma 2.2. Applying Lemma 2.3 (with P = 9a and Q = 3a) we
find that E[p/?’ § Mak =0 (mod p).

Now we assume (W%gn)) = —1. As 3n # 0,—2 (mod p) we see that (@) =
(et DEn 2P ASn)y _ (mASn)y — 1 By [9, Theorem 3.10], = = Y% (3% (n2(n 4 1))*

p p

(mod p) is the unique solution of the congruence (3n +2)?(3n — 1)x + 3z —I— 1 =0 (mod p). As

(B3n+2)*(3n — 1)a® + 3z + 1

1.2 9(1+n)
e )
Br=D(7+ 5,75 )1 (Br+2e—5) 4(1— 3n)
we see that x = —3n1+2 (mod p) is the unique solution of the congruence (3n + 2)*(3n — 1)z +
3241 =0 (mod p). Hence Y I"/? () (n*(n + 1)) = —z15 (mod p). This completes the

proof.
Example 2.1 Taking n = 1, —3 in Theorem 2.3 we see that for any prime p > 5,

[p/3]
2(3,5)2’“ 20 1) mod

k=1

p/3]
B33 ) i

k=1

Corollary 2.2. Let p > 3 be a prime, m € Z, and m # —3,9 (mod p). Then

[p/3] Nz .
() (A = O () e

Proof. Set n = }{—fg Then n # —1, —% (mod p), m = lljr—?’: and n?(n +1) = 4((7::31));. Now

applying Theorem 2.3 we deduce the result.
Lemma 2.6 ([9, Theorem 3.3]). Let p > 3 be a prime, a,b € Z, and ab(81b* — 12a) £ 0

(mod p). Then

., 81b% — 12a
g?):] (3k B2k (=3a)51+1U, = (9b, 3a) (mod p) if (T) =1,
k ) o = . 8107 — 12
k=0 ¢ —(—Sa)[ﬁlUp,(g)H(Qb, 3a) (mod p) if (Ta) =—1.
3
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Theorem 2.4. Let p > 3 be a prime, m € Z, and m # 1, =2,

(i) If p=1 (mod 3), then
[p/3]

2

1

k=1
0 (mod p)

m

2m+ 1
(ii) If p=2 (mod 3), then

—1
(m+1+(m—+2

(3:) (=3(m —1)(m +2))*

))

2

m—+ 2

I 3y, 1
2 [
= 2m1+ 1{<m - 1)<Z—1;)3

Proof. As 81 —12(—=3(m — 1)(m + 2)) = 3*(2m + 1)* and 2[8] +

m—1

p—(%)
3

—1 (mod p).

2 +(m+2)<—>p52} —1 (mod p).

p — 1, putting

a=—-3(m—1)(m+2)and b =1 in Lemma 2.6 and then applying (2.1) we see that

p/3] 1

1+)
k=1

(9(m —1)(m + 2))[51+1

3k
— ( k ) (=3(m — 1)(m +2))*
(9(m — 1)(m + 2))[%“1(]%(%)_1(9, —9(m — 1)(m + 2))

9+ 3(2m+ 1)

r—(5)

9—3(2m+ 1)

it

3(2m+1)
((m = 1) + 2)) 51+
2m +1

m—1

Ifp=1 (mod 3) and (7

/3]

2.

1

{(m—|—2)
—_1)[§}+(m+2)<

)LEI =1 (mod p), from the above we deduce that

p

-5

r—(§)

r—(%)
33 *1}

m_—|—2) [?;]} (mod p).

m—1

)=

T (m—1)

2 2

3
3

(3:) (=3(m — 1)(m + 2))*

k=1

If p=1 (mod 3) and (2:1)*5" # 1 (mod p), then 1+ (2-1)*5

Thus, from the above we deduce that

1
1 2N —-1=0
2m—|—1(m +m+2)
5o (ol

1

(=3(m —1)(m +2))*

(—(m+2)—3(

m—l)”gl)_l
m + 2

11
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3 m— 1\
1+ (B5D)) et
2m+1(m+ T2 (mod p)
This completes the proof.

Corollary 2.3. Let p > 3 be a prime, m € Z, and (2m + 1)*> # 0,—3,9,—27 (mod p).
Then the congruence x+ 3(m — 1)(m+2)x+3( —1)(m+2) =0 (mod p) has three solutions

if and only if p=1 (mod 3) and (mé) =1 (mod p).
) Proof. Set a = — S DY) = —3((2m+1)279) Then a # 0, 1 5 27, 247 (mod p). By Theorem
% 3k ! =0 (mod p)
2\ k) (=3(m — D)(m+ 2)F ~ b
1
= 2> —2—-1=0 (mod p) has three solutions

=3(m—1)(m+2)
= 2 +3m—1)(m+2)z+3(m—1)(m+2)=0 (mod p) has three solutions.

Ifp=1 (mod 3), t* = —3 (mod p) (t € Z) and (m+2) * 21 (mod p), then (m+;)p§1 = =1z
(mod p). As (2m +1)? £ -3 (mod p) we have 2m + 1 # +t (mod p) and so m + 1 # &
(mod p). Thus m+ 1+ (zé) # 0 (mod p). Hence applying Theorem 2.4(i) we deduce the
result.

Now we assume p =2 (mod 3). Clearly m # 1,—2 (mod p) and ™= # £1 (mod p). Thus

(nmllé)p 221 (mod p) and so (= 2) §é 1 (mod p). We also have (m 1)erl # 1 (mod p) and
SO ( )p+1 # 1 (mod p). Hence (m—) 3 Z—ff (mod p). Therefore

(m—1)(z—1;)p52+(m+2)(2—+3>%2 —(2m +1)

e N (= R P

Now combining the above with Theorem 2.4(ii) yields the result in the case p = 2 (mod 3).
The proof is now complete.
Corollary 2.4. Let p > 3 be a prime. Then

/3 o 0 (mod p) if3|p—1and2"5 =1 (mod p),
Z(k)G_kE 3-2"5  (mod p) if3|p—1and2"5 #1 (mod p),
k=1 2p—1 pt+l

275 —23 —1 (modp) ifp=2 (mod 3).

Proof. Taking m = —1 in Theorem 2.4 we deduce the result.
Corollary 2.5. Let p > 3 be a prime, ¢ € Z, and ¢ 0,1, —1 (mod p). Then

()

12



0 (mod p) if 3| p—1 and =1 (mod p),
1 p—1 p—1
_ ) —((c+1)cs —(c—2)) (modp) if3|p—1andcs #1 (mod p),

=Y c—1
1 p bp—
1 ~c%1(1—cT2)—1 (mod p) ifp=2 (mod 3).
—c
Proof. Taking m = ﬂ‘—f{f in Theorem 2.4 we derive the result.

For two numbers P and @ let {V,,(P,Q)} be defined by
VE)(P’ Q) =2, ‘/1(P7Q) = P> Vn+1<P7 Q) = PVR(Pv Q) - QVR—1<P7Q) (n > ]‘)

It is well known that

V,(P.Q) = (P+ \/1232_74@)” (P_ P _4Q)".

2

From [11, (4.2.19)] we know that

(2.6) Vo(P,Q) = PUL(P,Q) — 2QU,1(P, Q) = 2U,11(P,Q) — PUL(P, Q).
Lemma 2.7 ([6, Corollary 6.1]). Letp > 3 be a prime, ¢ € Z, and ¢(c*+3) #Z 0 (mod p).
Then
0 (mod p) if ¢ € Cy(p),

1 P
Uy (6,32 +3)) = { 5(73(+3)78 (modp) ifceCilp)
3 —%(—3(02 + 3))_[§] (mod p) if ¢ € Cy(p)

and .
2(3(c* + 3))_[§] (mod p) if c € Cy(p),

V. (6,3(c*+3 z{ »
D O3 = 32 13) B (modp) i e Cip) UCap),
Theorem 2.5. Let p > 3 be a prime, ¢ € Z, and c¢(c* +3) #0 (mod p). Then

0 (mod p) if ¢ € Cy(p),
[p/3] 3k 4 ko _M o -
; <k > (m) = 3(025 N (mod p) if c € Ci(p),

5 (mod p) if c € Cy(p).

Proof. Let a = ¢* + 3 and b = 2. Then 810> — 124 = —3 - 4¢>. By Lemma 2.6,

g% (Bk:) ( 4 >k

“—~ \ k) \9(c*+3)

{ ~(3(c*+3))F "Wes 1(6,3(c +3)) (modp) if3|p—1,
(3(c* +3))"5 Usn 4(6,3(c* +3))  (mod p) if3]p—2.

13



If p=1 (mod 3), by (2.6) and Lemma 2.7 we have

Upa 4(6,3(c +3)) = (6022 (6,3(c* + 3)) = Vit (6,3(c* + 3))

1
6(c% + 3)
—(3(c*+3)""F ' (mod p) if ¢ € Cy(p),
_ 0;3(3(c2+3>>”511 (mod p) if ¢ € O (p),
c—3
2c

If p=2 (mod 3), by (2.6) and Lemma 2.7 we have

(3(+3)""F 1 (mod p) if c € Calp).

1
Upsr (6, 3(c*+3)) = U1 (6, 3(c* +3)) + 5vp%l(ﬁ, 3(c +3))

(3(c2+3))""5 (mod p) if ¢ € Co(p),
_ _c;rc3(3(62 +3)7"%  (modp) ifce Cip),
_02_03(3(62 + 3))‘% (mod p) if c € Cy(p).
Hence
1 (mod p) if c € Co(p),
[p/3] c+3 .
Z (Bk) < 24 )k = — 26 (mod p) 1f cE Cl(p>7
—\ k 9(c? + 3) s

o (mod p) if ¢ € Cy(p).

This yields the result.
Corollary 2.6. Let p > 3 be a prime, d € Z, and (2d + 1)(d* +d+7) Z 0 (mod p). Then

0 (mod p) if 2 e Co(p),
[p/3] 3(d + 2 .
i \ B (@ d ) 3(d— 1)

i1 (mod p) if 24t € Co(p).

Proof. Set ¢ = 2d3—+1. Then 9(024+3) == +1d g Now the result follows from Theorem 2.5.

Corollary 2.7. Let p > 7 be a prime. Then

S (e

WIGH

i 3k 4\ K
Z( )<__> =0 (modp) <= p=2a"+54y° or 22* + 2Ty,

0 (modp) <= p=2a*+81y* or 22 + 2xy + 41y,

0 (modp) <= p =%+ 162y* or 22* + 81y,

14



[p/3] 3k 1\ K
Z(k‘)<_2_7> =0 (modp) < p=a2*+135y% or 5% + 27y°.
k=1

Proof. If zg’f{] (Skk)(%)k = 0 (mod p), by Remark 2.1 we have (*71) = (w) =1. If
p = 22 + 81y? or 222 + 2xy + 41y?%, we also have (’71) = 1. Suppose (=) =1 and s* = —1

(mod p) for s € Z. By Theorem 2.5 and [6, Theorem 5.2],

[p/3]
3k
Z <k‘><§> =0 (modp) = s € Co(p) @p:l‘2+81y2 or 2$2+2$y+41y2_
k=1

Similarly, using Theorem 2.5, [6, Theorem 5.2] and Remark 2.1 we deduce remaining results.
For two integers m and n let (m,n) be the greatest common divisor of m and n, and let
[m,n] be the least common multiple of m and n. Then we have:
Corollary 2.8. Let p and q be distinct primes greater than 3, m,n € Z, (mn(m?—n?)(m?*+

3n?),pq) =1 and (8)p = (£)g (mod [9,m* + 3n?]). Then

[p/3] 9 la/3] n2
2 <3;f > <9‘<m—24 T 3n2>)k =0 (modp) &) (%) (W)k =0 (mod g).

In particular, form = 2d+1 and n = 3 we see that if ((d—1)(d+2)(2d+1)(d*+d+7),pq) = 1
and (8)p = (£)q (mod [9,4(d* + d + 7)]), then

ip/3 "™
3k 1 3k 1
;(k)mzo (mOdP@Z(k)mzo (mod ).

Proof. Suppose m + n(1 + 2w) = +w" (1 — w)*(a + bw) with a,b,r,s € Z and a + bw = 2

(mod 3). Then a*—ab+b? | m*+3n? and so (8)p = (4)g (mod |a*—ab+0b%]). By [8, (1.1)-(1.2)],

(%+1+2w>
3

<m+n1+2w) < 1—w)5a+bw)>
b

p
P
3

3
— 1— %p,r 2(1—(5)p s —(—)
= (L) = (D),
q

3
(e, 20, —() + 142w
e e

a+ bw q 3

Thus, ™ € Cy(p) if and only if ™ € Cy(q). Now taking ¢ = ™ in Theorem 2.5 and applying the
above we derive the result.

Theorem 2.6. Let g be a prime of the form 3k + 1 and so 4q = L? + 27M? with L, M € Z
and L =1 (mod 3). Let p be a prime with p # 2,3,q and p{ L. Then

gi’i] <3k) M2k 0 (mod p) ifp's =1 (mod q),
=9y 3FIM/L oa=1l
~\k/) ¢ #/ (mod p) ifp 7= ugM/L (mod q).
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Proof. When p | M, by [6, Corollary 2.1] we have pE =1 (mod ¢). Thus the result is
2
true. Now assume p f M. Set ¢ = z%. Then ¢(c? + 3) # 0 (mod p) and m = MT‘ By
Theorem 2.5,

0 (mod p) if L/(3M) € Cy(p),
[p/3] 3 3M
S (*F M*_ ] 2 +25) (modp) if L/(3M) € Ci(p),
k ¢ 2 L
k=1 3 3M :
51— —-) (modp) if L/(3M) € Ca(p).
From [6, Corollary 2.1] we know that for r = 0,1, 2,
-1 (—1—=L/(BM)\" L
(2.7) P = (f) (mod q) <= = € C,(p).
As ﬁ = —% (mod gq), from the above we deduce the result.

Corollary 2.9. Let p > 7 be a prime. Then

/3 arn 0 (mod p) ifp=41 (mod7),

Z ( k;)_ =< —6 (modp) ifp=+2 (mod?7),

3 (modp) ifp=+4 (mod7).

Proof. As4-7 =12+27-1% taking ¢ =7 and L = M = 1 in Theorem 2.6 we deduce the

result.
Similarly, from Theorem 2.6 we deduce the following results.
Corollary 2.10. Let p be a prime with p # 2,3,5,13. Then

0 (mod p) if p=4+1,45 (mod 13),

[p/3] 19
> 3R L _ ) -~ (modp) ifp=+2,£3 (mod 13),
£\ k) 13F 35

~5 (mod p) if p=44,46 (mod 13).

Corollary 2.11. Let p be a prime with p # 2,3,7,19. Then
0 (mod p) if p=4+1,£7,48 (mod 19),

/3]
3 3 1 _ ) % (modp) ifp=+2,43,45 (mod 19),
=\ k) 198~ 15

—5 (mod p) if p=+4,46,£9 (mod 19).

Theorem 2.7. Let q be a prime of the form 3m+1 and so 4q = L? +27M?* with L, M € Z
and L = 1 (mod 3). Let p be a prime with p # 2,3,q, pt L and q Z 9M?*,27TM?* (mod p).
Then the congruence 3 — qv — gM = 0 (mod p) has three solutions if and only if p is a cubic

residue of q.

Proof. When p | M, we have L? = 4q (mod p) and so z° — gz — ¢M = 0 (mod p) has three
solutions. On the other hand, by [6, Corollary 2.1] and Euler’s criterion, p is a cubic residue of
g. Thus the result is true in the case p | M. Now we assume p{ M. By Theorems 2.1 and 2.6,

23 —qr —gM =0 (mod p) has three solutions
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(Mz)? —qMz —qM =0 (mod p) has three solutions
]‘g 23 —x—1=0 (mod p) has three solutions

S <3k> i =0 (mod p)
_k pu— p
P k q

IIIHI

q

<= p3s =1 (modgq) <= pis a cubic residues of q.
As examples, if p > 3 is a prime, then

23 —Tr—7=0 (mod p) has three solutions < p=7or p=+1 (mod 7),
23— 13z — 13 =0 (mod p) has three solutions < p =13 or p = +1,4+5 (mod 13),
3 —3lr —62=0 (mod p) has three solutions

< p =31 or pis a cubic residue of 31.

Theorem 2.8. Let q be a prime of the form 3m+1 and so 4q = L* +27M?* with L, M € Z
and L =1 (mod 3). Let p be a prime with p # 2,3,q and pt M. Then

% <3k) 12 )k 0 (mod p) ifps =1 (mod q),
5. ) =Y 3+ L/3M a1
~ \ k) \21q + (mod p) ifp's = w (mod q).

Proof. By [6, Corollary 2.1 and Proposition 2.1], the result is true When p | L. Now we
assume p{ L. Set ¢ = —=*. Then c(c +3) # 0 (mod p) and 9(02+3) 2. By [6, Proposition

2.2], =2 € C;(p) if and only if 237 € Ci(p). Thus, from Theorem 2.5 we deduce that

s 0 (mod p) if L/(3M) € Co(p),

(3R (L2 L s By ed ) i L/BM) € ¢

;(k)<2_7q): %< +3j¥)( p) if L/(3M) € Ca(p),
5(—3 — 3_M) (mod p) if L/(3M) € Cy(p).

This together with (2.7) yields the result.

Corollary 2.12. Let q be a prime of the form 3m+1 and so 4q = L?>+27M? with L, M € Z
and L = 1 (mod 3). Let p be a prime with p # 2,3,q, p 1 M and q # 9M?,27TM?* (mod p).
Then the congruence x> — 3qx — qL = 0 (mod p) has three solutions if and only if p is a cubic
residue of q.

Proof. When p | L, we have 23 —3¢z—¢L = z(2?—3M?) (mod p) and so N,(z*—3qz—qL) =
3. On the other hand, from [6, Proposition 2.1 and Corollary 2.1] we know that 0 € Cy(p) and
so p is a cubic residue of ¢. Thus the result is true in this case. Now we assume that p{ L. By
Theorems 2.1 and 2.8,

23 —3qr —qL =0 (mod p) has three solutions
— (L£2)* —3¢- L2z —qL =0 (mod p) has three solutions

= 2’:7303 —x—1=0 (mod p) has three solutions
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[p/3] 2
3k\ ; L*\*
(k‘>(2—7q) =0 (mod p)

Remark 2.2 Assume that the conditions in Corollary 2.12 hold. From (1.2) we know that
the discriminant of x® —3qz —qL is (27¢M)?. Thus, by (1.1), N, (23 —3qx—qL) = 0 or 3. Hence,
by Corollary 2.12, 2° — 3gqz — gL = 0 (mod p) is solvable if and only if p is a cubic residue
(mod ¢q). This is a well known result since Gauss and Kummer. See [1, Theorem 10.10.5] or |3,
Corollaries 2.16 and 2.25]. In our proof, we do not need cyclotomic numbers.

Corollary 2.13. Let p be a prime with p # 2,3,7. Then

0 (mod p) ifp=+1 (modT7),

/3 4
3 38\ 1 _ J - (modp) ifp==+2 (mod7),
=\ I ) 189F 3

—g (mod p) ifp=+4 (mod 7).

Proof. As4-7=1%2+427-12, taking ¢ = 7 and L = M = 1 in Theorem 2.8 we obtain the
result.

Conjecture 2.1. Let p > 3 be a prime, c € Z, and ¢* Z —3 (mod p). Then

[2p/3] 3k 4 . 0 (mod p) if ¢ € Cy(p),
ey (k)(m) ={1 (modp) ifceCilp),
k=(p+1)/2 —1 (mod p) if c € Cy(p).

From Conjecture 2.1 and (2.7) we may deduce the following result.

Conjecture 2.2. Let q be a prime of the form 3k+1 and so 4q = L*+27TM? with L, M € Z
and L =1 (mod 3). Let p be a prime with p # 2,3,q and p{ LM. Then

[%MS] (Bk) WEL 0 (mod p) ifps =1 (mod q),
= 3M e og=1

k=(p+1)/2 ¢ iT (mod p) ifps = ligM/L (mod g).
and )

[%fﬂ (3k) 12k 0 (mod p) ifps =1 (mod q),

= L —1
k poa-l _ —1+L/(3M)
k=(p11)/2 (279) jzg—M (mod p) ifps = ——£= (mod q).
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