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Abstract

For a # 0 we define {E,E”)} by Z,[(":/(z)] (znk)anE,S‘i)Zk =(l-a)" (n=0,1,2,...),
where [n/2] =n/2 or (n—1)/2 according as 2 | n or 2 { n. In the paper we establish
many congruences for E,(,”) modulo prime powers, and show that there is a set X and

amap T : X — X such that ( —1)”E§Z> is the number of fixed points of T".
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1. Introduction

The Euler numbers {E, } and Euler polynomials {E,(x)} are defined by

(1.1)
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which are equivalent to (see [6])

D
(1.2) Ey=1, Ep1=0, ) <2’:>E2r:0 (n>1)
r=0

and

Eax) + zo () Ei(x) =27 (12 0).

Euler numbers {E,} is an important sequence of integers and it has many prop-
erties and applications.  For example, according to [3] we have E(, 1), =
2h(—4p) (mod p), where p is a prime of the form 4k + 1 and h(d) is the class number
of the form class group consisting of classes of primitive, integral binary quadratic
forms of discriminant d. In 2005, Arias de Reyna[1] showed that there is a set X and
amap T : X — X such that (—1)"E,, is the number of fixed points of 7".

In [12] the author introduced the sequence S, = 4”E,,(%) and showed that
h(—8p)=S p1 (mod p) for any odd prime p. In [14] the author systematically studied
the sequence Us, = 32”E2,,(%). Inspired by the properties of {E, }, {S,} and {U2,},
we try to introduce more sequences of integers similar to Euler numbers. For this
purpose, we introduce the sequence {E,(,a)} for a # 0 given by

Wz](”) 2k (@) )
) a*E", =(1—a)" (n=0,1,2,...),
i—0 \2k *

where [x] is the greatest integer not exceeding x. Actually, EW = (2a)”En(2—1a), EM =

E,, E,(zz) =S, and {E,Sa)} is a sequence of integers. In the paper we mainly study the
). We show that there is a set X and a map 7 : X — X such that

(—=1)" éfl) is the number of fixed points of 7”. This generalizes Arias de Reyna’s
result for Euler numbers.
In Section 2 we establish some congruences for E,Ea) modulo a prime. For exam-

properties of E,(la

3
P
asp=5(mod12), p=1 (mod 12) or p =3 (mod 4).
Let Z and N be the sets of integers and positive integers, respectively. In Section 3

ple, for a prime p > 3 we have E(( )71)/2 =0,2h(—4p) or h(—12p) (mod p) according

we establish some general congruences for EQ(Z)k 4, modulo 2", where a € Z, k,m,n €

Nand b €{0,1,2,...}. For example, we determine Eéf?k 4, (mod 2430 where ¢ is
the nonnegative integer given by 2’ | @ and 2'*! { a. In the case a = 1, the congruence
was given in [13]. The congruence can be viewed as a generalization of the Stern’s
congruence ([8,16]) Eoniyp = E, — 2"k (mod 2+1) for even b.

For m € N let Z,, be the set of rational numbers whose denominator is coprime
to m. For a prime p, in [10] the author introduced the notion of p-regular functions.
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If f(k) € Z, for k=0,1,2,... and Y}_ (})(—1)*f(k) =0 (mod p") for all n € N,
then f is called a p-regular functlon If f and g are p-regular functions, from [10,
Theorem 2.3] we know that f - g is also a p-regular function.

Let p be an odd prime, and let b be a nonnegative integer. In Section 4

we show that fp(k) = (1 — (—I)L;]bJr[p“;l]Pk( )er)E/E() 1)+b and f3(k) = (1 -

(—1)[pT“](§)bJrl pklr= 1)“’)E]E() )45 &€ P- regular functions, where (£) is the Ja-

cobi symbol. Using the properties of p-regular functions in [10,12], we deduce

many congruences for E,(ZZ) and E,(,3) (mod p™). For example, for k,m € N we have
E]E(zp)(pm)er =(1—(-1) b b+[p74]pb)E£2) (mod p™), where @(n) is Euler’s totient func-
tion.

In addition to the above notation, we also use throughout this paper the following
notation: {x}—the fractional part of x, ord,n—the nonnegative integer o such that

p* | nbut p**! § n (that is p* || n), u(n) —the Mobius function.

(@)

2. Congruences for £, modulo a prime

Definition 2.1. For a # 0 we define {E,(la)} by

[If]<”) 2k (@)
EY, =(1-a)" (n=0,1,2,...).
= 2k 2k —

By the definition we have E,(,a) € Z fora € Z and E,El) = E,. The first few Euler
numbers are shown below:

Eo=1,Ey=—1,E;=5, Eg=—61, Eg = 1385, E;g = —50521,
Ep = 2702765, E1a = —199360981, Ejg = 19391512145.

The first few values of E,Sz) and E,(f) are given below:

B =1, B =1, B9 = 3, B9 = 11, B =50, B9 = 361, 50 = 76
EP = 24611, EPY) = 250737, B = —2873041, E) = —36581523;

ED =1, B = 2 EY = 5, E® =46, EY) =205, EY = 3362,

EP) = —22265, E) = 515086, E{ = 4544185, E{¥ = —135274562.

The Bernoulli numbers {B, } and Bernoulli polynomials {B,(x)} are defined by

Bo=1, Z() 0(m>2) and B,( i()ka" (n>0).



It is well known that (see [6])
2.1)

B =5 % (1) e,

r=0 \I

2 il x _2”“( (x—i—l) (x)>
_n+1<B"+1(x)_2 B”+1<2)>_n+1 Brei{ = Brei(3))-

In particular,

2(1- 2718,
n+1 '

2.2) E,=2"E, (%) and  E,(0) =
It is also known that (see [6])
(2.3) Byy13=0, B,(1—x)=(—=1)"B,(x) and E,(1—x)=(—1)"E,(x).

Theorem 2.1. Let n be a nonnegative integer and a # 0. Then

[n/2]
@ _ 1non Iy n N2k 2k
E = (2a) En(za)_};o<2k>(1 )" Eyy

Cone (P okt ka1 Bl
_,;)<k)2 (1-2 )]H_la.

Proof. By Definition 2.1 we have

oo (e} 2
o F o = (B (M)
n=0 nt =0 Vim0 \2k " !
_ <ia2k - ) y E(“>ﬁ) e ( y E<a>ﬁ).
25 2\ =" ml 2 =" m!
Thus,
oo M e(lfa)t el
2.4 EY— = = .
4 P I Ty T
From (1.1) we know that ">, En(ﬁ) (Zfﬁ)" = % Hence, from the above and (2.1)
we deduce
E(a) (2 )nE < 1 ) i <I’l> (1 a)n—rarE [rf] (”l)(l a)n72ka2kE
n = («d 7 Wl - r= - 2k-
2a = \r = \2k
By (1.1) and (2.2) we have
> 2(1-2""HB,,1 Qat)" & (2at)" 2
. = E O = .
n;) n+1 n! n;) n(0) n! e2ar 41



Thus
2

oo k
@1 _ ( ) ( k(] Zgk+) Bl ) t
Zb AT | va Z k+1/ k!

=0

i (Z( >2k+1( _2k+1)akfl_c|_+i);!

and so E* =Yl o (D)2M (1 =25k lz’j: 25t The proof is now complete.

Corollary 2.1. Leta# 0 and n € N. Then

i <n ‘£ : 1 | )
(—D'E" = { By

k> k n+lAn+l n POn+ . ]

k=0 2 (2 l)a nrl lf‘2+l’l

Proof. By Theorem 2.1 and the binomial inversion formula we have }; (Z)
(— 1)”"‘E,Ea) =2 (1 — 2”‘“)(1”%. Noting that B, = 0 for even n we deduce the
result.

Lemma 2.1. For n € N we have Eéi) = 13"+ 1)Ey.

Proof. Using (1.1), (1.2) and (2.4) we see that

> R = ()" 2¢! 2e! 2e' 4 2¢™
2y g3 —VE® _ _
n;() 2 (2n)! n;() " n! e6f+1+e*6t+1 e +1
2¢! 2e3 > > t
=+ = 3") E — 32" E .
e +1 +e6’+1 n;)( * ; * " (2n)!

So the result follows.
In [3], Ernvall showed that for a prime p = 1 (mod 4),

(2.5) E(p—1))2 =2h(—4p) (mod p) andso p{E;_ 1)

In [12] the author defined {S,} by S, = 1 — ¥4 (})2* %18, (n > 0) and showed
that S, = 4”En(1). Thus, by Theorem 2.1 we have S, = E,(,z). From [12, Theorem 3.1

and Corollary 3.1] we know that for any odd prime p,

2 2
(2.6) h(—8p) = E((p)_l)/2 (mod p) and hence pJ(E((p)_l)/z.

Now we state the similar congruence for E ((2)_1) n (mod p).
Theorem 2.2. Let p be a prime greater than 3. Then

0 (mod p) if p=>5 (mod 12),
E; ={ E(y_1)/2 = 2h(—4p) (mod p) ifp=1(mod 12),
h(—12p) (mod p) if p=3 (mod 4).



Proof. If p =1 (mod 4), by Lemma 2.1 and (2.5) we have

B =507 4 )E =5 (14 () ) e

{ (mod p) if p=5 (mod 12),

=2h(—4p) (mod p) if p=1 (mod 12).

Now assume p =3 (mod 4). It is known that (see [6]) By, (1) = $(2!7%" —
1)(3'-2" —1)B,,. Thus,

| _p=t 1//2 3
Bri(g) =5~ 10677 0B =5((5) -1)((5) ~1)Bep
_ [ 0(mod p) if p=7,11,23 (mod 24),
- ZBPTH (mod p) if p=19 (mod 24).

Hence, by Theorem 2.1 and (2.1) we have

=(8) (e ()22 ()

1
SBLH(E) (mod p) if p=7 (mod 24),
2
={ —8B,: (=) (mod p) if p=11,23 (mod 24),
2
1
8B, +8Bpn (ﬁ) (mod p) if p =19 (mod 24)

Now applying [12, Theorem 3.2(ii)] we obtain E((f;)fl)/z = h(—12p) (mod p). So the
theorem is proved.

Remark 2.1 In a similar way, one can show that for any prime p =
) s
11,19 (mod 20), (1+2(—1)% )a(—5p) = 2E'2) (mod p).
=

Corollary 2.2. Let p be an odd prime with p # 5 (mod 12). Then p{ E((Sl 12

Proof. For p =3 (mod 4), it is well known that ([15, pp.3-5]) 1 < h(—12p) < p.
So the result follows from Theorem 2.2 and (2.5).
Theorem 2.3. Let p be an odd prime, m € {2,3,4,...} and p = £1 (mod m).

Then |
i m _(m
Y ()7 =F(DEZEY (mod p)



| k
(—1)1*1¢z—(—1)[1’/m1”; E™? (modp) fork=24,... p—3.

i
Proof. Letk € {1} U{2,4,...,p—3}. Putting s = 1 and substituting k by p—1—k
[12, Corollary 2.2] we see that

Ep,lfk«»—<—1>[%]Epflfk({%})

[p/m]

p/m
plklz lplk_

2(—1)k Z (=1~ = (mod p).
we have

It is well known that ([5]) pB,—1 = p—1 (mod p). Thus, in view of (2.2) and (2.3)

_ 0 (mod p)
2(1-27"%B, 4
E, 1 4(0) = P==<02-20 pB,. 20 —2
p=1=0) p—k Nl il (mod p) ifk=1.
p pr-1 p
Using (2.3) and Theorem 2.1 we see that
1 m m .
» Ep,z(%) =m>" ”E; /22) EmE;_/zz) (mod p) ifm|p—1,
E({7}) = 1 L .
E, »(1— %) = —Ep_z(%) =-mE,5" (modp) ifm|p+1.
From the above we deduce
[p/m] 1 2p71 -1
i-11 Jm) M - (m/2)
Y= CPTE (mod )
Taking m = 2 we have the known result ¥! (-1l = pr;_] (mod p). Hence
i1 (p/2] 1 [p/m] i1 AT ()2
Y 0= Y DT = Y ()T =R (- )PZETY (mod p).
pen | L3 !
Fork € {2,4

,p— 3}, using (2.3) and Theorem 2.1 we see that

(2] = a(L) -

_mf(pfl k) (m/2) __

pflfk =

mkEI(J /1 ) (mod p).
Now putting all the above together we deduce the result
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3. Congruences for E,§“> modulo 2"

In [12] the author established many congruences for E,, (mod 2™), where m,n € N.

In the section we extend such congruences to Ez(Z)er (mod 2™), where a is a nonzero

integer and b € {0,1,2,...}.
Lemma 3.1. Let s and n be nonnegative integers. Then

(i)
£ (o) () e

im0 \k S 0 ifs<n.

X":(n)(_l)nk(ZkJrl): ;ii(z:)zz s>

im0 \K S 0 ifs<n.

Proof. (i) can be found in [4, (3.64)]. We now use (i) to deduce (ii). By (i) we

have

)¢
L ()5

s—n s—1—n n S—n

B if s =n,

if s <n.

This proves (ii).
Theorem 3.1.Let a be a nonzero integer, n € N and let b be a nonnegative integer.

Suppose that o, € N is given by 2% 1 <n < 2%,
(i) If p is an odd prime divisor of a, then

$ () = 22t
= k 2k+b — 0 (mod p(n+1)0rd,,a) if2 | n

(ii) We have

(a) {0 (mOd 2<n+1)0rd2“*0‘n+0rdzn+2n) if2 | n,

" n
~1)"*Ey =
k;() <k) ( ) 2k 0 (mod 2n0rd2a+2nfoc,l) lf2 1, n

8



and

i <n> (_l)nka(a) _ {O (mod 2("+1)0rd2a+2n) . n
i—o \k 2417 0 (mod 2nordaat2n—orda(nt )y ok
(iii) We have

n
Y (Z) (— 1)’“E§Z)+b = () (mod 2(>F0rd2a)n=0u)
k=0
Moreover, if 2 | n and 21 b, then
- (n kg (a) (24-ordya)(n+1)—a
Y L (—1)*Ey,, =0 (mod 2 ").
k=0
Proof. Using Theorem 2.1, Lemma 3.1 and (2.3) we see that

n n 2k s+1 s s+1
n k-(a) n _1\n—k 2k\ 2 a (1 -2 )BS-H
L (1) e -2 ()2 (0) 5

k=0

B ZZn 2s+las(1 _ 2s+1) o1 <n>( 1) <2k>
a s=0 s+1 $<k<n S

l\)

g g ()

_ iri 2s+las(1 2s+l) o1 n 22n ;
S—n

=] s+1
B ZnZ—’I 22n+las(1 _ 2S+I)BS+1 n
= s+1 s—n
2s
and
n n k(@) n n k2k+l 2k+1 25+1as(1_2s+1)B 4
¥ () oel =¥ () ot L —
k=0 k=0 s+
_ 2nz+’1 25t (1 — 2s+1) -~ Z <n> (— 1)+ <2k+ 1>
= s+1 = \k S
1 2n+1 n+1
— 22n+1 s 1_2S+1 B )
n+1 3;1 a By s—n
2s
From Corollary 2.1 we see that for odd s,
2s+1(1 _25+1)BS+1 s
3.1 =— 1)'E, € Z.
3.1 s+1 Z <r> ©



2s+1 a ( 15+l )Bs+]

) =0 (mod p*%%). Now,

Thus, if p is an odd prime with p | a, then
from the above we deduce that fori =0, 1,

nn 0 (mod p"odr4) if24n,
3.2 —FEW = {
(3.2) kg(’) <k>( ) 2k+i 0 (mod p(n+1)ordpa) if2 ‘ n.
From [10, (2.5)] we know that for any function f,

n

33 Y (Z)(—l)’“f(ﬂm):i( ) (-1 "%(H”) ) £(7)-

k=0 =0
Thus,
n n ok (a) B n n fmla)
kg(,) <k)( D Ey’y = k;) <k>( 1) T
(3.4

[b/2] 2] K (kn
— 2 r (a)
o Z ( > Z ( > E2r+b 2051
k=0
Now applying (3.2) we deduce (i).

Suppose s € {n,n+1,...,2n—1} and 21s. If 2| n, then 2ts—nand so (," ) =
(1) =0 (mod 2°rd2”) Since 2B, = 1 (mod 2) and 20720+ <541 < 2n <
2%+1 we see that ords (s + 1) < o, and so

24° 1_2S+1 B
0rd2( al ) s+]< " )) > s ordra — o, + ordon

s+1 s—n
> (n+1)ordya — o, + ordyn.

If 21 n, we see that

2a°(1-2""1B s
ord2< al ) SH( " >>Zord2< j_1>2nord2a—ocn.
n

s+1 s — s
Therefore,
no/a e 22 (1—2DByy [ n
kZo(k)(—l)” ‘= Y ( o ) (S_n)zzn
s
0 (mod 201+ Dorda=outordzms2ny e |
- { 0 (mod 2"+ 21— if 21 n.

Since 2B,+1 =1 (mod 2) for odd s we also have

" /n 1 2l n+1
1 n— kE( ) 22n+1 Ky 1 _ 2S+1 B
¥ (7 )orte, - S £ (]

k=0 n

7 {0 (mOd 2(n+1)0rd2a+2n) if 2 | n,

= 0 (IIlOd 2nord;a+2n—0rd2(n+l)) ifZJ(n.

10



So (i1) holds.
Since 2071 1) < 5 4 1 < 2% we see that ordy(n+ 1) < a,. Thus, from (ii) we
deduce

(3.5) Z (Z) (_ l)kEéz)ﬂ' = (mod 22n+nordzafotn) for i=0,1.
k=0

As O] = O Or O + 1, we see that 2(s+ 1) — a1 > 25 — o5 and hence 2r — o, >
2s — o, for r > 5. For k > 0, by (3.5) we have

k+n

k+n o (a . ) )
Z < , >(—1) Eérlhd[%] =0 (mod 92(k+n) =0 n+(n-+k)ordy ).
r=0

Since 2(k+n) — Oy, > 2n — A, we must have

k+n k+n r(a) I norda
;6( r >(_1) E2r+b—2[§] =0 (mod 2 2y,

Combining this with (3.4) we obtain

Z <"> (= 1)"E§Z)+b = 0 (mod 2(>Ford2a)n=0ny
=0 \k

Now we assume 2 | n and 21 b. For k,n € N we have n+k >2 > {I and so

n+k+1
T < 16. Hence

k+1
log,(n+k+1)—log,(n+k—1) zlogz% <4

and so
(n+k)(2+ordra) —logy(n+k+1) > (n+k—2)(2+ ordra) —log,(n+k—1).

Since 207K+ < 4 k41 and n+2 < 2% we see that ords (n+k+ 1) < log, (n+
k+1) and log,(n+2) < o,. Thus, for odd k we have

(n+k)(2+ordya) —ordy(n+k+1) > (n+k)(2+ordra) —logy(n+k+1)
> (n+k—2)(2+ordra) —log,(n+k—1)
> .- > (n+1)(24ordya) —log,(n+2)
> (n+1)(2+ordra) — o,

and so (by (ii))
ntk fpak o (a i e
(3.6) Z( . )(1) §,ilzo(mod2< H1)(2torta) o).
r=0

11



For even k, using (ii) and the fact
(n+k+1)ordza+2(n+k) > (n+1)ordra+2n > (n+1)(2+ ordra) —

we see that (3.6) is also true. Thus applying (3.4) we deduce that
Yio()(—1 )kEékLb = 0 (mod 2(*+1)(2+orda)=0u) Thig completes the proof.

Corollary 3.1. Let a be a nonzero integer and b € {0,1,2,...}. Then f(k) = éﬁb
is a 2—regular function.

Proof. Let o, € N be given by 2%~ ! <n < 2% As 2" > n, we see that o, < n
and so 2n — o, > n. Now applying Theorem 3.1(iii) we obtain the result.

Theorem 3.2. Suppose that a is a nonzero integer, k,m,n,t € N and b €
{0,1,2,...}. For s € N let o, € N be given by 2%~ <5 < 2% and let es(a,b) =

—s\vS N r (a)
2% o (0)(=1) Eyryy oy Then
n—1
4 nel—r(k=1=1\ (k\ _(a mn ordoa)ri—
Eé’")kt—l—b = Z(—l) ! (n— ! —r) (},.)Eém)rl-‘rb (mod 2"+ (1Fordaa)n=cuy
r=0
Moreover,
n—1
(a) - n—1-r k—1—r k (a)
E m pr— _1 E m
= T (0T () e

4+ pmn <k) (—t)"en(a,b) (mod 2mn+(1+ord2a)(n+1)—(1n+1).
n

In particular, when 2 | n and 21 b, we have

a (= k—=1=r\ (kY _(a
Eém)kter = Z (_ 1)n1r< l"> <r> Eém)rt+b (mod 2mn+(l+0rdza)(n+l)7(x,,+1 )

= n—1-—r

Proof. Forr € NsetA,(a,b) =2""Y;_, (! (—l)sEéflb. As o, <r, using Theorem
3.1(iii) we see that A,(a,b) € Z, and

mod 201 Forda)r=0+2+ordaay 5o | and 24 p,

mod 2(1Fordza)r=0r) otherwise.

b
3.7) Aa,b) = {g E

By [9, Lemma 2.1] we have

a (k= 1=1\ [k
B - L0 (1) (D) s

= n—1—r

-y (’;) -1y Yy <Z>( 1 Egy

s=0

(3.8)

12



From Corollary 3.1 and the proof of [12, Theorem 4.2] we know that

n s
z(s)<—1>E;nzf+,,

s=0
om— l _
_1 r—n !
(3.9) = Au(a,b)t" 2™ + Z A(a, b)(Mg#n
r= n+1 r.
%2 m 1)n l + Z )j!2r7j.S(] n) 2] n (2m71t)j)’
j=n+1 ]'
where {s(n,k)} and {S(n,k)} are Stirling numbers given by
n
x(— 1) (mn 1) = Y (=) s )
k=0
and .
X = ZS(n,k)x(x— 1) (x—k+1).
k=0
By [12, Lemma 4.2], forn+1 < j < r we have
ity S
G0y S0y SGmnt i g dMZ’ "E< " ) (mod 2).
r! J! r! r—n

As O] <0+ 1 wehave s+ 1 — o1 > s — 0, and hence r — o, > s — o for r > s.
Therefore, by (3.7) we have 207 1)ordatn+1=0uy | A,(a,b) for r > n+ 1. Hence, using
(3.9) we get

AT <’:>( 1)ES) ., =2"1"Ay(a,b) (mod 27+ (Ordat )=ty
r=0

From (3.7) we have 2(1torda)n—a, | Ay(a,b). Since o1 = o, or a, + 1 we see that
mn+ (n+1)(1+ordya) — a1 > mn+ (14 ordra)n — a,,. Hence, by (3.11) we get

= (n
(312) Z (r> (_l)rEém),«t+b =0 (mOd 2mn+(1+0rd2a)n O(,,)
r=0

Forn' >n+1wehaven' — o, >n+1—a,, and so

mn' + (1+ordya)n’ — oy > (m+ordaa)(n+1)+n—+1— 04t y.

Thus, using (3.12) we see that forn’ > n—+1,

n /
313 Y <”r)( 1) ES), ., =0 (mod 27+ Dlordat )=t
r=0

13



When 2 | n and 2 1 b, by Theorem 3.1(iii) and the fact o, > o, we have
ordrAp(a,b) > (2+ordra)(n+1) —a, —n > (n+1)(1+ordra) + 1 — Gy 1.

Thus, it follows from (3.11) that

(3.14) y (Z) (—1)EN) =0 (mod 2mwH(mHh(omdsat )=ty
r=0
By (3.4) we have
[b/2] [b/z] r+n r+n
_1)" 1\

(3.15) An(a,b) = zn ( ; )( 1 g( s >< DBy gy
From Theorem 3.1(iii) we know that

v r+n N a)lr-—n)—0o,.

YZ:')< s ><_1) EZ(c)Ha 23] =0 (mod 23Fomerin ),

For r € N we have (2 + ordya)(r+n) —041p > (1 +ordra)(n+1)+n+1—041.
Thus, from the above we deduce that

(3.16) An(a,b) = e,(a,b) (mod 201 Forda) 1=y

Now combining (3.11)-(3.14), (3.16) with (3.8) we derive the result.
Theorem 3.3. Let a be a nonzero integer, k,m € N, m > 2 and b € {0,1,2,...}.
Then

(a) (@)
E2’"k+b - Eb
2"k(a®((b—1)*+5) —a+2"ka’(b— 1)) (mod 2 4+30rda)
={ 2™ka((b+1)>+4—2"k(b+1)) (mod 2™ )

2"k(a® — 1) (mod 2"4) if 2t ab.

Proof. For s € N let o, € Z be given by 2%~ < < 2% and let

r r (a)
=2 Z ( ) E2r+b and es(a,b) =2~ Z < > 2r+b—2[§}'

Since s(r,1) = (r—1)! and S(j,1) = 1, taking n = 1 and ¢ = k in (3.9) we see that

2k r—1
a a m 2
EY —E., =2 k{Al(a,b)—i— Z Arlab) (=
(3.17) Y S
) N P\BI ) g J. 2(m71)j7mkj71 )
Jz“ g >}
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For j > 3 it is easily seen that 23—7,1 2m=1j=m = (mod 4). By Theorem 3.1(iii) we
have 2(1+0r2a)r =0 | A (g p). Thus, for r > 5 we have ordyA,(a,b) > (1 + ordya)r —
o, > Sordra+5—ds =24 Sordya. Set H, =1+ % +- 4 % From the definition of
Stirling numbers we know that s(n,2) = (n— 1)!H,_ for n > 2. Thus, for r > 2,

(—1)s(r,2)2! 221 2r-1

r—2 m—2 m—2
. 2 o 2" =H, 2k
Hence, from the above we deduce that
(a) (a)
Eyjp —E,
om=1lg 2r—1 2r—1

= —ka(Al(a,b)+ Y A,(a,b)( i -2'"*1/()) (mod 27++30rdzay
r=2 r

Set |
2}‘7 2}‘70(,,1
=201 _1Hr71 :

f(r)=H,— .

Since 2%-1~'H, | € Z we see that f(r) =0 (mod 4) for r > 5. It is easily seen that
f(2)=1, f(3) =2 and f(4) = % Hence, from the above we deduce that
(3.18)

EY , —EY+ 2"%{A1 (a,b) + (1—2""1k)As(a, b)}
0 (mod 2m4+30rdaa)y iy — D and k = 1,
4 11
= —2'”"{(5 —2"k)As(a,b) + (2 — 3 2" ) Ag(a,b)} (mod 2mT30rda)
ifm>2ork>1.

From (3.16) we see that
3.19)
A4(a,b) = e4(a,b) (mod 2°75%24) and  As(a,b) = e3(a,b) (mod 22740124,

If 21 b, by Theorem 3.1(iii) we have

24 Z < > kEZk)H) =0 (mod 23+50rd2a)

From Theorem 2.1 we have

E¥=1,EY=1-a, E{" =1-2a, E{) = 1-3a+24°,

EY =1-4a+84, E" = 1—5a+20d° — 164°,

E = 1-6a+40a° —96a°, E\” = 1 —7a+70a° — 3364 + 27247,
E” = 1—8a+112d° —8964° +21764’.

(3.20)

15



Hence, if 2 | b, from (3.19) and (3.20) we deduce that

1 a a a a a
As(a,b) = es(a,b) = = (Bg” —4EL + 6B, — 4EL + B

16
= 84°(17a> —4) = 0 (mod 2°7%%),
Therefore, we always have A4(a,b) = 0 (mod 23+3°7%4), From (3.20) we see that
(3.21) |
(B —3E +3EY — E) = 243 (64> — 1) if2 | b,
es(ab) =14 3
g(El(“) —3EY 3B — E\Y) =24%(—17a* + 184> — 1) if 2¢b.
Thus, applying (3.19) we get A3(a,b) = e3(a,b) = (1 + (—1)%)a’ (mod 22+30rda),
Therefore, (3 —2"k)A3(a,b) = (5 —2"k)(1+ (—1)®)a® = —4a>(1 + (-1)*) (1 +
2"=2k) (mod 24+30r%24) Hence, by the above and (3.18) we obtain

- Effy— By = =2 A1 (@,0) + (1-2"'K)As(a,b)
(3.22) 43 _1\ab m—2 m—+4+3o0rdya
4a° (14 (—=1)*®)(1+2"k) ¢ (mod 2 ).

From Theorem 3.1(ii) we see that

. r a rdra

Thus, by (3.15) we have
LR (/21N WS (K2 @
mien) =3 ¥ (") g (7)), Ly

k=0 s=o \ %

=15 () e 315 () e )

s=0 s=0
1

4
From (3.20) we know that

(482(61,[)) — [g] . 863 (a,b)) = ez(a’b) -2 [g] e3(a’b) (IIlOd 24+30rd2a)‘

2a° if 2| b,

1 a a a
(24) eafab) = 4 (E)y ~ 2B, o +EL] )_{4a3<1_a2) if21b

4\ b-2[%] 2+b-2(5] 4+b-2[3]
This together with (3.21) yields
ex(a,b) —Z[g]eg(a,b)
2a3 —b-2a(6a> — 1) = 2a°>(1 + b — 64°b) if 2] b,
= 4a*(1—a?) — (b—1)-2a*(—17a" +184% — 1)
=2a°(17a*(b— 1)+ (16 — 18b)a® +b+1)  if2¢b.

16



Thus,

As(a,b) = ex(a,b) —2 [g] e3(a,b)

(3.25) 2a3(1+b) (mod 2430r%4) if 2 | g,
= { 2a(1—b) (mod 2*73°"%2%)  if24gand 2 | b,
0 (mod 24+30rdaa) if 24 ab.

By (3.23) and (3.15) we have

13 (b2 R k1 (@
met) =3 ¥ (") 0y (T e, L,

s=0

B L ()

s=0
b
= —(2e(a,b) - [g] -dey(a,b) + <[§]> ~8e3(a,b)>
| = 1)es(a,b) (mod 2*+30rda),

From (3.20) we have

1 (a) _Ja if 2| b,
(3.26) ei(a,b) = 5 (Eb_z[g] E2+b_2[g]) “Va_d if21h
Hence, from the above we deduce
(3.27)

b by, b
Ai(a,b) =e(a,b) — 2[5]62(a,b) —i—2[§] ([E] —1)es(a,b)
b(b—2
a—b-2a°+ blb=2) 203 (6a> — 1) = a(1 — a*b* +6a*b(b —2))

=a—a’b? (mod 24H30rde

_Jda-d—(b-1)-4a°(1-a*)+
=a—a’b* (mod 247372%)  if 2 |gand 21,

a—a*—(b—1)-4a*(1—-a®)+ (b—1)(b—3)a’(—17a* + 184> — 1)
=1—a* (mod 247324y if2tgand 21b.

if 2| b,
b—1)(b—3)a’(=17a* + 184> — 1)

Now substituting (3.25) and (3.27) into (3.22) we obtain the result.

Fora=1,2|band m > 4, by Theorem 3.3 we have

E,+5-2"k (mod 2"™) if b=0,6 (mod 8),

E m =
b {E,, —3.2"k (mod 2™} if b=2,4 (mod 8).

17



This has been given by the author in [13].
Corollary 3.2. Let k be a nonnegative integer. Then

) _ {56k+1 (mod 512)  if4|k(k—1),
4 56k —255 (mod 512) if 41 k(k—1),

£ E{—200k—3(moc1512) if 4| k(k—1),
HH2 T =200k +253 (mod 512)  if4tk(k—1),

Ey) =152k—1 (mod 512), E\.=24k+11 (mod 512).

Proof. Taking a =2 and m = 2 in Theorem 3.3 we deduce the result for k£ > 1.
Since Eéz) =1, El(z) =—1, Eéz) = —3 and E§3) = 11, we see that the result is also
true for k = 0.

Theorem 3.4. Let a be a nonzero integer, k,m € Nand b € {0,1,2,...}. Then

Eéfln)k% = kEé,a,,)er — (k— I)EIE“) (mod 22’"“”0“12“).
—_9—Ss\S s rp(a)
Proof. For s € Nseteg(a,b) =27Y3_, () (~1) Esziz[%]. From (3.24) we know

that 2a3 | e5(a,b) and so 2'73°7%2¢ | ¢, (a,b). Now taking n = 2 and ¢ = 1 in Theorem
3.2 and then applying the above we deduce the result.

(3)

pandE; ., (mod p”)

4. Congruences for £ ,5(2]))_1)

Let p be an odd prime. 1In [12] the author showed that f(k) = (1 —
(—1) %pk(p_])+b) Ey(p—1)+» 18 a p-regular function when b is even. In this section we

establish similar results for E,(,z) and E,(,3), and then use them to deduce congruences

(2) (3)
for Ei, 1y p and B gy (mod p").
Lemmad4.1. Letme N, r€ {0,1,2,...,m—1} and b € {0,1,2,...}. Let p be an

odd prime not dividing m. Then

_ r PAr—r A —
f(k) = mHP= D+ (Ek(p71)+b<*> —(=1)" Ek(p71)+h<*r>17k(p 1)+b>
m m
is a p-regular function, where A, € {0,1,...,m— 1} is given by pA, = r (mod m).
Proof. For x € Z, let (—x), be the least nonnegative residue of —x modulo p.
From [10,Theorem 3.1] we know that
B X+(=x)p —B
Bk(pfl)erJrl(x) —Bi(p—1)1p+1 k(p—1)+b k(pfl)+b+1( P ) k(p—1)+b+1
k(p—1)+b+1 k(p—1)+b+1

18



is a p-regular function. Hence

(k) = Bi(p—1)+b41 ("5 ) = Brip-1)+5+1(35)
¢ k(p—1)+b+1
B (w) _B (M)
_ pkp=1)+b k(p—1)+b+1 P k(p—1)+b+1 5

k(p—1)+b+1
is a p-regular function.

Let AL € {0,1,...,2m — 1} be such that pA! = r (mod 2m). Then p(A. +m) =
m—+r (mod 2m) and A, = A). or A, —m according as A, <morA.. >m. As SRR

/ p B
PAy—T
T T A and
14 2m

m+r + p(AL+m)—(m+r)

Al +m
2m r . I
, , = if A, <m,
T (e p 2m ’
p m+r p(A,—m)—(m+r) r
+ 2m _ Ar2 m 1fA/r 2 m,
p m
using (2.1) we see that
m m+r L+ _r
Buptypp () By gy (B e
k(p—1)+b+1
/+ A/
Bip-1)45+1(%5) = B(p—1)+611(35) _ (k=144 1) (‘ilr)
k(p —1)+b+1 Kp=1+oh5,
if AL < m,
RE (45) -~ B (5) AL-
k(p—1)+b+1 k(p—1)+b+1\723 :_zf(k(p,1)+b+1)E ( r m)
k(p—1)+b+1 Ko=)
if AL >m.

r=r Ar
= 2 =040 D) (B (7>
m

Also, by (2.1) we have

Bi(p—1)+b+1("55") = Br(p—1)+b+1(5) ~(k(p—1 r
m m/ _ y=(k(p-)+b+1) g B 2.
k(p—1)+b+1 kp UH’(m)

Thus, from the above we see that

g(k) :2*(k(17*1)+b+1)(Ek(pil”b(%) —(—1)”’77 rEk(p 1)+b<1:1)pk(p 1)+b>
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is a p-regular function. By Fermat’s little theorem we have

kio <Z) (=1 @m)" V% = (2m)"(1 = (2m)"~')" = 0 (mod p").

Thus 2K(P=D+b+1yk(p=1)+b s 3 p-regular function. Hence, by the product theorem
for p-regular functions ([10, Theorem 2.3]), f(k) = 2KP=D+b+1,kp=D+bg(k) is a
p-regular function as asserted.

From Lemma 4.1 we have the following result.

Lemma 4.2. Let p be an odd prime, m € {2,3,4,...} and p = £1 (mod m). Let
b be a nonnegative integer and r € {1,2,...,m—1}. Then

r(p—1) _ _ r .
(1= (=1) " pro=Debypkp=Vxbpg () if p=1 (mod m),
flk)= n

rp+1) _ _ r .
(1= (=1)PH0 phlp= 15y k(p 1)+bEk(p—l)+b(%) if p=—1 (mod m)

is a p-regular function.

Proof. Let A, € {1,2,...,m — 1} be such that pA, = r (mod m). Then clearly
A, =rorm—raccording as p =1 or —1 (mod m). Since E, (1 —x) = (—1)"E,(x),
we have

r

Ek(p71)+b(mn; r) = (—1)k(p_])+bEk(p—1)+h<E) = (—1)bEk(p—1)+b< : )

m

Now applying the above and Lemma 4.1 we deduce the result.
Theorem 4.1. Let p be an odd prime and let b be a nonnegative integer. Then

(i) fa(k) = (1 - (—1)%ib*[pT_]]pk(P*I)+b)E]E?;_l)+b is a p-regular function.
(i) f3(k)=(1— (—1)[%1] (%’)b+1pk(”_1)+b)E]E(3;_1)+b is a p-regular function.

Proof. Puttingm =4 and r — 1 in Lemma 4.2 and applying Theorem 2.1 we obtain
(i). Putting m = 6 and r = 1 in Lemma 4.2 and applying Theorem 2.1 we obtain (ii)
in the case p > 3. From Theorem 3.1(i) we see that (ii) is also true for p = 3. So the
theorem is proved.

From Theorem 4.1 and [12, Theorem 4.3 (with r = 1 and d = 0)] we deduce the
following results.

Theorem 4.2. Let p be an odd prime and k,m,n € N. Let b be a nonnegative
integer. Then

2l (2 ke(p™)+b ) g (2)
(1_(_1) 7 ] phe(p™)+ )Ek(p(pme
1

n— ey k—l—r k p—1 p—1 " mn 2 mn
_ O(_l) 1 ( >( >(1 _(_1)P2 b+ ]p o(p )+b)Er((p)(pm)+b (mod p™")

n—1—-r/\r

rrly Py b+1 n 3
(1—(—1)[ 0 ](g) Tplelr )+b>El£(p)(p”’)+b
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n—1 n—1—r k_l—l" k p+l p b+1 ” m (3) mn
= r;)(—l) 1 < )< )(1—(—1)[ 5 ](5) prow )+h>Erq)(pm)+h (mod p™").

n—1—r/\r

In particular, for n =1 we have E]E(ZP)(pme =(1- (—1)%b+[p74]pb)E£2) (mod p™)

3 ptl b+1 3
and Elg(p)(p”’)+b =(1—(-D% ](g) pb)Els ) (mod p™).
Lemma 4.3. (See [10, Theorem 2.1].) Let p be a prime, n € N and let f be a

p-regular function. Then there are integers ag,ay,...,a,—1 such that
f)=a, (K" " - +atk+ag (mod p*) for k=0,1,2,....

Moreover, if p > n, then ag,ay,...,a,—; (mod p") are uniquely determined and
PO | ag fors=0,1,...,n—1.

From Theorem 4.1 and Lemma 4.3 we deduce the following result.

Theorem 4.3. Let p be an odd prime, n € N and p > n. Let b be a non-
negative integer. Then there are unique integers agy,aj,...,Ap—1,C0,Cly---,Cn—1 €
{0,£1,+2,..., :l:%} such that for every nonnegative integer k,

(1= (=) T Mo g =, k! - ark+ag (mod p")

k(p—1)
and
(25 (PP ip—1)4b )\ 203) -1 n
(1—(—1) 6 (g) p )Ek(p71)+bECn_1kn +---+cik+co (mod p").
Moreover, p*—"%" | a; and p*~°%%" | ¢s for s =0,1,...,n— 1.

Corollary 4.1. Let k € N. Then

(i) ESY) = —9k? 4 6k (mod 27), E}) | = 9K% + 6k — 4 (mod 27);

(ii) E$Y) = 1375k — 375k + 305k + 2 (mod 3125) (k > 2);

(iii) E\y) | = —625k3 — 1475k — 1380k — 6 (mod 3125);

(iv) E), = —375k3 — 975k — 1335k — 78 (mod 3125);

(V) E{2) 5 = —1500K3 + 825k% — 1100k + 1386 (mod 3125).

Proof. As E(()z) =1, El(z) = —1 and Ez(z) = —3, taking p = n =3 in Theorem 4.3
we see that (1 — 32k)E§i) = —9k* + 6k (mod 27) and (1+ 32"“)E§)+l = 9k* + 6k —
4 (mod 27). This yields (i). Parts (ii)-(v) can be proved similarly.

Corollary 4.2. Let k € N. Then

(i) ESY = —6k+1 (mod 27), ES) | = —6k—2 (mod 27);

(i) E§Y) = 375k% +-450k2 — 620k (mod 3125);

(iii) ES). | = 1250k* — 625K — 175k% — 675k — 12 (mod 3125);

(iv) ES)) ) = —625k* — 500k° + 1000k% — 385k + 120 (mod 3125);

(V) ES)) = —625k* — 625K3 — 525Kk% — 1435k — 454 (mod 3125).
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5. {(=1)"E\} is realizable

Let {b,}(n > 1) be a given sequence of integers, and let {a, } be defined by a; = b;
and na, = b, +aiby—1 +---+ay_1by (n=2,3,4,...). If {a,} is also a sequence of
integers, following [11] we say that {b, } is a Newton-Euler sequence.

Lemma 5.1. (See [14, Lemma 5.1].) Let {b,}_, be a sequence of integers. Then
the following statements are equivalent:

(i) {bn} is a Newton-Euler sequence.

(il) Xyjuu(%)ba = 0 (mod n) for every n € N.

(iii) For any prime p and o,,m € N with p{ m we have bype = b,y a1 (mod p%).

(iv) For any n,t € N and prime p with p' || n we have b, = b (mod p").

(V) There exists a sequence {c,} of integers such that b, = Yapndca foranyn € N.

Proof. From [1, Theorem 3] or [2] we know that (i), (ii) and (iii) are equivalent.
Clearly (iii) is equivalent to (iv). Using Mobius inversion formula we see that (ii) and
(v) are equivalent. So the lemma is proved.

Let {b,};7_, be a sequence of nonnegative integers. If there is a set X and a map
T : X — X such that b, is the number of fixed points of 7", following [7] and [1] we
say that {b, } is realizable.

In [7], Puri and Ward proved that a sequence {b,} of nonnegative integers is
realizable if and only if for any n € N, %Zd\n“(%)bd is a nonnegative integer. Thus,
using Mobius inversion formula we see that a sequence {b, } is realizable if and only
if there exists a sequence {c,} of nonnegative integers such that b, = Ya|ndcq for any
n € N. In [1]J. Arias de Reyna showed that {E»,} is a Newton-Euler sequence and
{|E2n|} is realizable.

Lemma 5.2. (See [6, p.30]). Forn € Nand 0 < x < 1 we have

n! & sin((2m+ 1)mx — =F)
E,(x)=4-
n( ) o1 mZ:,O (2m+1)"+1

Taking x = % in Lemma 5.2 and applying Theorem 2.1 we deduce

ynes L V2E (2

5.1 ) — had
1) = (2m+ 1)+t n! \4
Theorem 5.1. Let a,n € N. Then
1, 2n—1
nel@) _ 4 a -(2n)! 1
(=1) 2w > m2n+1 ( o (2a+1)2n+1) >0
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and

g+l 2n , 2 !a—] 1 4n+1 2n 21)! -1
(_1)HE£Z) < a2n+1( n) 2n+1 < a2n+l( n) <1 a2n+1 )
ps = (2r+1) T 3
Proof. By Theorem 2.1 and Lemma 5.2 we have
(
(~1)"Es)
0o (2m+1)
1 sin( —nm)
_ 2
=(-1)"(2a) "E2n<%) (— 4a 2n+1 Z 2m+1 2n+1
_ gn+lg2n, (2n)! i sin (2’”2‘21) _ 4ntlg2n (2n)! i aZ (2r+l)
m2n+1 = (2m + 1)2n+1 m2n+1 = = 4ak+2r—|— 1)2n+1
g (o)) i“ism (2r+ l)n( 1 B 1 )
B . 2a (4ak+2r+ 1)1 (dak+2a+2r+1)2+!

Forr € {0,1,...,a— 1} we have sin (2r+l) > 0 and so

. 2r+ D= 1 1
Sin ( Wl 1) > 0.
2a (dak+2r+1)>+1  (dak+2a+2r+1)2+
Thus,
1 .2n
(a) 4@ (2n)! I . m
(VB> g (1~ W) 0
It is well known that sinx > 2 Zx for 0 < x < 7. Thus sin 5, 1 . So the first inequality

18 true. Since

y f (2r+1) ( ! I )
sin _
k=07r=0 2a (dak+2r+1)2+1  (4ak+2a+2r+ 1)+

:0; ( (dak +2r+1)2n+1 (4ak—|—4a—|-2r_|_1)2n+1>
1

1
combining the above we obtain the remaining inequality.

Theorem 5.2. Let n € N with 24 n. Then (—1)"3' E{¥ > 0 and (—1)
Proof. For k > 0 we see that

n+l
2

EY >o0.

1 1 1 1
Bk+ 1)1 (8k+3)™1  (8k+5)y+ | (Bk+7) T
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_ (Bk+ 1) (8k+ 7)) (8k+3)" T+ (8k 4 5)" !

(8k+1)m+1(8k+ 7)1 (8k+3)m+1(8k +5)+!
. (8k+1)n+1+(8k+7)n+1 —(8k+3)"+1 —(8k—|—5)n+1
(8k—|—3)"+1(8k+5)”+1
;LO (n-H) <8k+3>r4n+lfr_ n O("-H) (8k+1)r4n+1 r

r r=i

_I - 0.
(8k13)" 1 (8k + 5)mt1 ~

TR SN
(-1)% mgo< T

= 1 1 1
— > 0.
; ( 8k+1 T Bk 3T (Bk4 5y (8k+7)"+1)
Now applying (5.1) we deduce (—1)%E,(12) > 0.
Similarly, for £ > 0 we have

1 1 1 1
(12k+ 1)1 (12k+5)+1  (12k+7)+1 * (12k+11)n+1

Thus, using Lemma 5.2 and Theorem 2.1 we obtain

> 0.

3
n+l1 E}’(l ) . ﬂ"+1

e
0" T e
1 1 o] 1
:(_1)%En(6)nn+ :<_1)% sin(2m+1—3n)%
don) L " Gnripr

°° 1 1 1 1
_ V3 Z ( _ n ) > 0.
2 A\ (k0T (12k+ 5T (12k+ 7)1 (12k+ 1)

Hence, ( —1)%E,(,3) > 0. The proof is now complete.

Theorem 5.3. Let a be a positive integer. For any prime divisor p of n € N we
have Eéz) = EZ(Z)/p (mod p°™). Hence {Eéz)} is a Newton-Euler sequence.

Proof. Suppose 2 | n and n = 2"ny with 2 t ng. From Theorem 3.3 we see that
Eéff,)k = Eéa) =1 (mod 2™) for m > 2 and k € N. It is well known that 2 { E5;. Thus,
using Theorem 2.1 we see that Eéz) = (1 —a)*Ey+a**Ey = 1 (mod 2). Hence,

EY —Eg® (mod 2™).

2mn0

(@) _ pla)
E2n - EZ’"~2n0 =1

Now suppose that p is an odd prime divisor of n and n = p™n; with ptn;. If p | a,
by Theorem 2.1 and the fact L;l € Zp for r > 1 we have

n n—1 2r
Eéi) = 2"—&- Z ( " > a)z’l’z’a—Ez = (1 —a) (mod p™)

2r—1 r
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and

Since p | a, we have

1

(1—a)? = (1 —a)?mew=2mp"" = (1 _g)2r"" — (1 —a)% (mod p™).

Thus E\Y) = Eéfl)/p (mod p™).

Let us consider the case p { a. Suppose that A; € {0,1,...,2a — 1} is given by
2a | (pA; —1). From Lemma 4.1 we know that for a given nonnegative integer b,

_ 1 PA—1 Al -~
SR = a) B, (o) = (1) @) I E,  (51) PO
2a 2a

is a p-regular function. By [10, Corollary 2.1] we have f(kp™~') = £(0) (mod p™).
Thus, using Theorem 2.1 we obtain

(5.2) EIEZ?,I,I(pil)JFb = Eéa) (mod p™) for b>m.

As 2n; p" ! > m, using (5.2) we see that

Eéz) — E(a) — E(a) — E( a) _ E(a)

m
2n1pm 2n1p’"‘1(p71)+2n1p’" 1 2n1pm 1 — 2n/p (mOdp )

Now putting all the above together with Lemma 5.1 we obtain the result.
Theorem 5.4. Let a € N. Then {( —1)"E§Z)} is realizable.
Proof. Suppose that p is a prime divisor of n and ¢t = ord,n. From Theorem 5.3

we know that Eéfl) = Eéz)/p (mod p'). It is easily seen that (—1)" = (—1)"/? (mod p').

Thus, (—1)”E§Z) = (-1 ”Ez(n)/ (mod p'). Hence, using Lemma 5.1 we know that

{(—1)”E§Z)} is a Newton-Euler sequence and so %de/.l(g)(—l)dEz(Z) € Z. By The-
orem 5.1, (—1)”E2(Z) > 0. Now it remains to show that Y., () (— l)dEéfl) > 0. From

(3.20) we have Ez(a) =1—2a and E4(“) = 1 —4a+8a>. Thus the inequality is true for

n=1,2.
1

From now on we assume n > 3. Observe that 1 + 3"2,% <aand 1 — Gar1yT >
1— 32,11“ >1— % for m € N. Using Theorem 5.1 we see that for m € N,
26 4"t g? 1 (2m)! (@ _ 4" a® . (2m)!
(53) E ' an—H < (_1)mE2m < an—H
Hence
Z,U (n/d)( dEZd)
dn
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—(~)'EY 4+ Y un/d)(—1)EY

d|n,d<%
[n/2] n+l 2n—1 v /2] ga+1 2d+1 |
() dpla) _ 26 4"a (2n)! 49t q (2d)!
> (—1)n 2n T Z(—l) Ey; > 27' q2n+tl B 2d+1
d=1 d=1
26 16a 4a®\n1 244 4q2\a
L 26 160 o, (Y e ety
27 w? T2 =\
26 16a 4a? 27 w2 (A4t e

n—1 ¢
:ﬁ.?.n!{(n—i—l)(n—i-z)...@n)(?) -5 4'714022_175}
T
For a > 2 we have (%2)”—1 > (%)[%Hl _%2 and

27 w4 27 w? 1
>

Dn+2)--(2n)>4-5-6>-L. "/ S0 0
(n+D(n+2)--- (2n) 2 726 16/nP—1-26 4 42/m—1

Thus, from the above we deduce ¥, (%) (—l)dEéz) > 0. For a = 1 we see that

4\n-1 27 72 iz_(iz)[%]ﬂ
1 2. (2 (7> e v e
Ant 1)yt 271 271
>2< ) —— = >2n———— >0
"\ 26 1-4/m2~ """ 26 1-4/n

and so ¥y, u(%) (—l)dEéfi) > 0 by the above.
Now summarizing the above we prove the theorem.
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