
Advances in Applied Mathematics 48(2012), 106-120

Constructing x2 for primes p = ax2 + by2

Zhi-Hong Sun
School of Mathematical Sciences,

Huaiyin Normal University,
Huaian, Jiangsu 223001, P.R. China

E-mail: zhihongsun@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

Let a and b be positive integers and let p be an odd prime such that p = ax2+by2 for some
integers x and y. Let λ(a, b;n) be given by q

∏∞
k=1(1−qak)3(1−qbk)3 =

∑∞
n=1 λ(a, b;n)qn. In

this paper, using Jacobi’s identity
∏∞

n=1(1−qn)3 =
∑∞

k=0(−1)k(2k+1)q
k(k+1)

2 , we construct x2

in terms of λ(a, b;n). For example, if 2 - ab and p - ab(ab+1), then (−1)
a+b
2

x+ b+1
2 (4ax2−2p) =

λ(a, b; ((ab + 1)p − a − b)/8 + 1). We also give formulas for λ(1, 3;n + 1), λ(1, 7; 2n + 1),
λ(3, 5; 2n + 1) and λ(1, 15; 4n + 1).

MSC: Primary 11E16, Secondary 11E25
Keywords: Binary quadratic form; Jacobi’s identity

1. Introduction

Let p be a prime of the form 4k + 1. The two squares theorem asserts that there are
unique positive integers x and y such that p = x2 + y2 and 2 - x. Since Legendre and Gauss,
there are several methods to construct x and y. For example, if we choose the sign of x so
that x ≡ 1 (mod 4), we then have

(1.1) (Gauss [3], 1825) 2x ≡
(p−1

2
p−1
4

)
(mod p),

(1.2) (Jacobsthal [3], 1907) 2x = −
p−1∑

n=0

(n3 − 4n

p

)
,

(1.3) (Liouville [7], 1862) 6x = N(p = t2 + u2 + v2 + 16w2)− 3p− 3,

(1.4) (Klein and Fricke [6], 1892) 4x2 − 2p = [qp]q
∞∏

k=1

(1− q4k)6,

(1.5) (Sun [13], 2006) 2y = 5p + 3− 8Vp(z4 − 3z2 + 2z) for p ≡ 5 (mod 12),

where
(

a
p

)
is the Legendre-Jacobi-Kronecker symbol, N(p = t2 + u2 + v2 + 16w2) is the

number of integral solutions to p = t2 + u2 + v2 + 16w2, [qn]f(q) denotes the coefficient of
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qn in the power series expansion of f(q), and Vp(f(z)) is the number of c ∈ {0, 1, . . . , p− 1}
such that f(z) ≡ c (mod p) is solvable. We note that (1.3) was conjectured by Liouville and
proved by A. Alaca, S. Alaca, M. F. Lemire, and K. S. Williams ([1]).

Let Z and N denote the sets of integers and positive integers, respectively. For a, b, n ∈ N
let λ(a, b;n) ∈ Z be given by

q

∞∏

k=1

(1− qak)3(1− qbk)3 =
∞∑

n=1

λ(a, b;n)qn (|q| < 1).

In his “lost” notebook, Ramanujan ([9]) conjectured that λ(1, 7;n) is multiplicative and

∞∑

n=1
2-n

λ(1, 7;n)
ns

=
1

1 + 71−s

∏

p≡3,5,6 (mod 7)

1
1− p2−2s

∏

p≡1,2,4 (mod 7)

1
1− (4x2 − 2p)p−s + p2−2s

,

where s > 1, p runs over all distinct primes and x2 is given by p = x2 +7y2 ≡ 1, 2, 4 (mod 7).
This was proved by Hecke ([5]). See also [10]. The above assertion of Ramanujan implies

(1.6) λ(1, 7; p) = 4x2 − 2p for primes p = x2 + 7y2 ≡ 1, 2, 4 (mod 7).

In his “lost” notebook, Ramanujan ([9]) also conjectured that λ(4, 4;n) is multiplicative.
This was proved by Mordell ([8]) in 1917. It is easily seen that λ(4, 4; p) = λ(1, 1; (p + 3)/4)
for p ≡ 1 (mod 4). Thus, (1.4) is equivalent to

(1.7) λ(1, 1; (p + 3)/4) = 4x2 − 2p for primes p = x2 + y2 ≡ 1 (mod 4) with 2 - x.

In 1985 Stienstra and Beukers ([11]) proved

(1.8) λ(2, 6; p) = 4x2 − 2p for primes p = x2 + 3y2 ≡ 1 (mod 3).

It is easily seen that λ(2, 6; p) = λ(1, 3; (p + 1)/2) for odd p.
In this paper, with the help of Jacobi’s identity ([2])

(1.9)
∞∏

n=1

(1− qn)3 =
∞∑

k=0

(−1)k(2k + 1)q
k(k+1)

2 (|q| < 1),

we construct x2 for primes p = ax2 + by2. For example, if a, b ∈ N, 2 - ab and p is an odd
prime such that p - ab(ab + 1) and p = ax2 + by2 with x, y ∈ Z, then

(1.10)

(−1)
a+b
2

x+ b+1
2 (4ax2 − 2p) = λ(a, b;n + 1)

=
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(aσ( 1

a) + bσ(1
b ))

k1 · · · (aσ(n
a ) + bσ(n

b ))kn

1k1 · k1! · · ·nkn · kn!
,

where n = ((ab + 1)p− a− b)/8 and

(1.11) σ(m) =





∑

d|m
d if m ∈ N,

0 otherwise.

This can be viewed as a vast generalization of (1.6)-(1.8). In this paper we also give formulas
for λ(1, 3;n + 1), λ(1, 7; 2n + 1), λ(3, 5; 2n + 1) and λ(1, 15; 4n + 1).
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2. Basic lemmas

A negative integer d with d ≡ 0, 1 (mod 4) is called a discriminant. Let d be a discriminant.
The conductor of d is the largest positive integer f = f(d) such that d/f2 ≡ 0, 1 (mod 4). As
usual we set w(d) = 2, 4, 6 according as d < −4, d = −4 or d = −3. For a, b, c ∈ Z we denote
the equivalence class containing the form ax2 + bxy + cy2 by [a, b, c]. Let H(d) be the form
class group consisting of classes of primitive, integral binary quadratic forms of discriminant
d. For more details concerning binary quadratic forms, see for example [4]. For n ∈ N and
[a, b, c] ∈ H(d), following [14] we define

R([a, b, c], n) = |{〈x, y〉 ∈ Z× Z : n = ax2 + bxy + cy2}|.
It is known that R([a, b, c], n) = R([a,−b, c], n). If R([a, b, c], n) > 0, we say that n is
represented by [a, b, c].

For m,n ∈ N let (m,n) denote the greatest common divisor of m and n.
Lemma 2.1 ([14, Lemma 5.2]). Let d < 0 be a discriminant with conductor f . Let p

be a prime and K ∈ H(d).
(i) p is represented by some class in H(d) if and only if (d

p) = 0, 1 and p - f .
(ii) Suppose p | d and p - f . Then p is represented by exactly one class A ∈ H(d), and

A = A−1. Moreover, R(A, p) = w(d).
(iii) Suppose (d

p) = 1. Then p is represented by some class A ∈ H(d), and

R(K, p) =





0 if K 6= A,A−1,
w(d) if A 6= A−1 and K ∈ {A,A−1},
2w(d) if K = A = A−1.

Lemma 2.2 ([14, Theorem 7.1]). Let d be a negative discriminant and K ∈ H(d). If
n1, n2 ∈ N and (n1, n2) = 1, then

R(K,n1n2) =
1

w(d)

∑

K1K2=K
K1,K2∈H(d)

R(K1, n1)R(K2, n2).

Lemma 2.3. Let a, b ∈ N and let p be an odd prime such that p 6= a, b, p - ab + 1 and
p = ax2 + by2 with x, y ∈ Z.

(i) If ab+1 is not a square, then R([a, 0, b], (ab+1)p) = 8 and all the integral solutions to
the equation (ab+1)p = aX2 + bY 2 are given by {x± by, ax∓y}, {x± by,−(ax∓y)}, {−(x±
by), ax∓ y} and {−(x± by),−(ax∓ y)}.

(ii) If ab + 1 = m2 for m ∈ N, then R([a, 0, b], (ab + 1)p) = 12 and all the integral
solutions to the equation (ab + 1)p = aX2 + bY 2 are given by {mx,±my}, {−mx,±my},
{x± by, ax∓ y}, {x± by,−(ax∓ y)}, {−(x± by), ax∓ y} and {−(x± by),−(ax∓ y)}.

Proof. Since p 6= a, b and p = ax2 + by2 < p2, we see that p - abxy, (a, b) = 1 and
(−4ab

p ) = (−aby2

p ) = (a2x2

p ) = 1. As p - ab + 1 and [1, 0, ab][a, 0, b] = [a, 0, b], by Lemmas 2.1
and 2.2 we have

R([a, 0, b], (ab + 1)p) =
1

w(−4ab)

∑

AB=[a,0,b]
A,B∈H(−4ab)

R(A, p)R(B, ab + 1)

=
R([a, 0, b], p)R([1, 0, ab], ab + 1)

w(−4ab)
= 2R([1, 0, ab], ab + 1).
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If ab+1 is not a square and ab+1 = X2+abY 2 for some X, Y ∈ Z, we must have X2 = Y 2 = 1
and so R([1, 0, ab], ab + 1) = 4. Hence R([a, 0, b], (ab + 1)p) = 2R([1, 0, ab], ab + 1) = 8. It is
clear that

xy 6= 0 and (ab + 1)p = (ab + 1)(ax2 + by2) = a(x± by)2 + b(ax∓ y)2.

Thus, {x± by, ax∓ y}, {x± by,−(ax∓ y)}, {−(x± by), ax∓ y}, {−(x± by),−(ax∓ y)} are
the eight integral solutions to the equation (ab + 1)p = aX2 + bY 2. This proves (i).

If ab + 1 = m2 for m ∈ N and ab + 1 = X2 + abY 2 for some X, Y ∈ Z, we must have Y ∈
{0,±1} and so R([1, 0, ab], ab+1) = 6. Hence R([a, 0, b], (ab+1)p) = 2R([1, 0, ab], ab+1) = 12.
Since xy 6= 0 and

(ab + 1)p = (ab + 1)(ax2 + by2) = a(mx)2 + b(my)2 = a(x± by)2 + b(ax∓ y)2,

we see that {mx,±my}, {−mx,±my}, {x± by, ax∓ y}, {x± by,−(ax∓ y)}, {−(x± by), ax∓
y}, {−(x± by),−(ax∓ y)} are 12 integral solutions to the equation (ab + 1)p = aX2 + bY 2.
This proves (ii).

Lemma 2.4. Let a, b ∈ N, (a, b) = 1 and let p be an odd prime such that p 6= ab, ab + 1
and p = x2 + aby2 with x, y ∈ Z. Suppose (a− 1)(b− 1) 6= 0 or a + b is not a square. Then
R([a, 0, b], (a + b)p) = 8 and all the integral solutions to the equation (a + b)p = aX2 + bY 2

are given by

{x± by, x∓ ay}, {x± by,−(x∓ ay)}, {−(x± by), x∓ ay}, {−(x± by),−(x∓ ay)}.

Proof. Since p 6= ab, ab + 1, we see that p = x2 + aby2 > 1 + ab ≥ a + b and so p - a + b.
As [1, 0, ab][a, 0, b] = [a, 0, b], by Lemmas 2.1 and 2.2 we have

R([a, 0, b], (a + b)p) =
1

w(−4ab)

∑

AB=[a,0,b]
A,B∈H(−4ab)

R(A, p)R(B, a + b)

=
1

w(−4ab)
R([1, 0, ab], p)R([a, 0, b], a + b) = 2R([a, 0, b], a + b).

If a+b = aX2+bY 2 for some X, Y ∈ Z, we must have X2 = Y 2 = 1. Thus R([a, 0, b], a+b) = 4
and so R([a, 0, b], (a + b)p) = 2R([a, 0, b], a + b) = 8. It is clear that

xy 6= 0 and (a + b)p = (a + b)(x2 + aby2) = a(x± by)2 + b(x∓ ay)2.

Thus, {x± by, x∓ ay}, {x± by,−(x∓ ay)}, {−(x± by), x∓ ay}, {−(x± by),−(x∓ ay)} are
the eight integral solutions to the equation (a + b)p = aX2 + bY 2. This completes the proof.

Lemma 2.5. Let a, b, n ∈ N. Then
∑

x,y∈Z,x≡y≡1 (mod 4)
ax2+by2=8n+a+b

xy = λ(a, b;n + 1).
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Proof. Using Jacobi’s identity (1.9) we see that

q

∞∏

n=1

(1− qan)3(1− qbn)3

= q
( ∞∑

k=0

(−1)k(2k + 1)qa
k(k+1)

2

)( ∞∑

m=0

(−1)m(2m + 1)qb
m(m+1)

2

)

=
∞∑

n=0

∑

k,m≥0

a
k(k+1)

2
+b

m(m+1)
2

=n

(−1)k(2k + 1) · (−1)m(2m + 1)qn+1.

Thus,
λ(a, b;n + 1) =

∑

k,m≥0

a
k(k+1)

2
+b

m(m+1)
2

=n

(−1)k(2k + 1) · (−1)m(2m + 1)

=
∑

k,m≥0
a(2k+1)2+b(2m+1)2=8n+a+b

(−1)k(2k + 1) · (−1)m(2m + 1)

=
∑

x≡y≡1 (mod 4)
ax2+by2=8n+a+b

xy.

This proves the lemma.
Lemma 2.6. Let a, b ∈ N with (a, b) = 1 and ab ≡ 1 (mod 4). Let p be an odd prime

such that R([a, 0, b], 2p) > 0. Then R([a, 0, b], 2p) = 2w(−4ab).
Proof. Suppose that 2p = ax2 + by2 with x, y ∈ Z. Since 2p < p2 we see that p - xy.

We claim that p - ab. If p | a, then p | by2 and so p | b. This contradicts the fact (a, b) = 1.
Hence p - a. Similarly, we have p - b. Since −ab ≡ 3 (mod 4) we see that 2 - f(−4ab).
Thus, by Lemma 2.1, there exists exactly one class A ∈ H(−4ab) such that R(A, 2) > 0
and we have A = A−1. Using Lemmas 2.1, 2.2 and the fact R([a, 0, b], 2p) > 0 we see that
R([a, 0, b], 2p) = 1

w(−4ab)R(A, 2)R(A[a, 0, b], p) = R(A[a, 0, b], p) = 2w(−4ab). This completes
the proof.

Lemma 2.7. Let a, b ∈ N, ab ≡ 3 (mod 4), K ∈ H(−4ab) and K = K−1. Let p be an
odd prime such that p - ab and R(K, 4p) > 0. Then R(K, 4p) = 2w(−ab).

Proof. From Lemma 2.2 we have

2R(K, 4p) =
∑

AB=K
A,B∈H(−4ab)

R(A, p)R(B, 4) > 0.

Since 2 | f(−4ab), by [14, Theorem 5.3(i)] we have R(B, 4) = 0 or w(−ab) for B ∈ H(−4ab).
Suppose R(A, p) > 0 for A ∈ H(−4ab). Then (AK)−1 = K−1A−1 = KA−1 = A−1K and so
R(A−1K, 4) = R((AK)−1, 4) = R(AK, 4). From the above and Lemma 2.1 we see that

2R(K, 4p)

=
{

R(A, p)R(AK, 4) = 4 · w(−ab) if A = A−1,
R(A, p)R(A−1K, 4) + R(A−1, p)R(AK, 4) = 2w(−ab) + 2w(−ab) if A 6= A−1.
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This yields the result.

If {an} and {bn} are two sequences satisfying

a1 = b1 and bn + a1bn−1 + · · ·+ an−1b1 = nan (n = 2, 3, . . .),

we say that (an, bn) is a Newton-Euler pair as in [12]. For a rational number m let σ(m) be
given by (1.11). Now we state the following result.

Lemma 2.8 . Let a, b ∈ N. Then (λ(a, b;n + 1),−3(aσ(n/a) + bσ(n/b))) is a Newton-
Euler pair. That is, for n ∈ N,

aσ(
n

a
) + bσ(

n

b
) +

n−1∑

k=1

(
aσ(

k

a
) + bσ(

k

b
)
)
λ(a, b;n + 1− k) = −n

3
λ(a, b;n + 1).

Proof. Suppose that q is real and |q| < 1. As

1− qn =
n−1∏

r=0

(
1− e2πi r

n q
)
,

we see that

1 +
∞∑

n=1

λ(a, b;n + 1)qn =
∞∏

k=1

(
1− qak

)3(1− qbk
)3

=
∞∏

k=1

ak−1∏

r=0

(
1− e2πi r

ak q
)3

bk−1∏

s=0

(
1− e2πi s

bk q
)3

.

Observe that
∞∑

k=1

{ ak−1∑

r=0

3
(
e2πi r

ak

)n
+

bk−1∑

s=0

3
(
e2πi s

bk

)n}

= 3
∑

k∈N
ak|n

ak + 3
∑

k∈N
bk|n

bk = 3aσ
(n

a

)
+ 3bσ

(n

b

)
.

From the above and [12, Example 1] we deduce the result.
Lemma 2.9. Let a, b, n ∈ N. Then

λ(a, b;n + 1)

=
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(aσ( 1

a) + bσ(1
b ))

k1 · · · (aσ(n
a ) + bσ(n

b ))kn

1k1 · k1! · · ·nkn · kn!
.

Proof. This is immediate from Lemma 2.8 and [12, Theorem 2.2].

3. Constructing x2 for primes p = ax2 + by2

6



Theorem 3.1. Let a, b ∈ N with 2 - ab. Let p be an odd prime such that p 6= a, b,
p - ab + 1 and p = ax2 + by2 with x, y ∈ Z. Let n = ((ab + 1)p− a− b)/8. Then

(−1)
a+b
2

x+ b+1
2 (4ax2 − 2p)

= λ(a, b;n + 1) =
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(aσ( 1

a) + bσ(1
b ))

k1 · · · (aσ(n
a ) + bσ(n

b ))kn

1k1 · k1! · · ·nkn · kn!
.

Proof. Clearly 2 | x or 2 | y. If 2 | y, then p ≡ ax2 ≡ a (mod 4) and so (ab + 1)p ≡
(ab + 1)a ≡ a + b (mod 8). If 2 | x, then p ≡ by2 ≡ b (mod 4) and so (ab + 1)p ≡ (ab + 1)b ≡
a + b (mod 8). Thus n ∈ N. By Lemma 2.3, all the integral solutions {X, Y } with 2 - XY to
the equation 8n+a+b = (ab+1)p = aX2 +bY 2 are given by {x±by, ax∓y}, {x±by,−(ax∓
y)}, {−(x±by), ax∓y}, {−(x±by),−(ax∓y)}. Since x±by ≡ (−1)

a+b
2

x+ b+1
2 (ax∓y) (mod 4),

applying Lemma 2.5 we have

λ(a, b;n + 1) =
∑

X≡Y≡1 (mod 4)
aX2+bY 2=8n+a+b

XY

= (x + by) · (−1)
a+b
2

x+ b+1
2 (ax− y) + (x− by) · (−1)

a+b
2

x+ b+1
2 (ax + y)

= (−1)
a+b
2

x+ b+1
2 2(ax2 − by2) = (−1)

a+b
2

x+ b+1
2 (4ax2 − 2p).

This together with Lemma 2.9 yields the result.
Corollary 3.1. Let p be a prime of the form 4k + 1 and so p = x2 + y2 with x, y ∈ Z

and 2 - x. Let n = (p− 1)/4. Then

4x2 − 2p =
∑

k1+2k2+···+nkn=n

(−6)k1+···+kn
σ(1)k1 · · ·σ(n)kn

1k1 · k1! · · ·nkn · kn!
.

Proof. Taking a = b = 1 in Theorem 3.1 we obtain the result.
Corollary 3.2. Suppose that p ≡ 1, 9 (mod 20) is a prime and so p = x2 + 5y2 for some

x, y ∈ Z. Let n = 3(p− 1)/4. Then

(−1)x−1(4x2 − 2p) = λ(1, 5; (3p + 1)/4)

=
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(σ(1) + 5σ(1

5))k1 · · · (σ(n) + 5σ(n
5 ))kn

1k1 · k1! · · ·nkn · kn!
.

Proof. Taking a = 1 and b = 5 in Theorem 3.1 we obtain the result.
Theorem 3.2. Let a, b ∈ N with (a, b) = 1. Let p be an odd prime such that p 6= ab, ab+1

and p = x2 + aby2 with x, y ∈ Z. Let n = (a + b)(p− 1)/8.
(i) If 2 - ab, then

(−1)
ab+1

2
y(4x2 − 2p) = λ(a, b;n + 1)

=
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(aσ( 1

a) + bσ(1
b ))

k1 · · · (aσ(n
a ) + bσ(n

b ))kn

1k1 · k1! · · ·nkn · kn!
.

(ii) If 2 - a, 2 | b, 8 - b and 8 | p− 1, then

(−1)
y
2 (4x2 − 2p) = λ(a, b;n + 1)
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=
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(aσ( 1

a) + bσ(1
b ))

k1 · · · (aσ(n
a ) + bσ(n

b ))kn

1k1 · k1! · · ·nkn · kn!
.

Proof. If (a − 1)(b − 1) 6= 0 or a + b is not a square, using Lemma 2.4 we see that
R([a, 0, b], (a + b)p) = 8 and all the integral solutions to (a + b)p = aX2 + bY 2 are given by
{x ± by, x ∓ ay}, {x ± by,−(x ∓ ay)}, {−(x ± by), x ∓ ay}, {−(x ± by),−(x ∓ ay)}. If a = 1
and b + 1 = m2 for m ∈ N, using Lemma 2.3(ii) we see that R([1, 0, b], (b + 1)p) = 12 and all
the integral solutions to (b + 1)p = X2 + bY 2 are given by {mx,±my}, {−mx,±my}, {x ±
by, x∓y}, {x±by,−(x∓y)}, {−(x±by), x∓y}, {−(x±by),−(x∓y)}. If b = 1 and a+1 = k2

for k ∈ N, using Lemma 2.3(ii) we see that R([a, 0, 1], (a + 1)p) = 12 and all the integral
solutions to (a + 1)p = aX2 + Y 2 are given by {ky,±kx}, {−ky,±kx}, {x± y, x∓ ay}, {x±
y,−(x∓ ay)}, {−(x± y), x∓ ay}, {−(x± y),−(x∓ ay)}.

We first assume 2 - ab. If ab ≡ 1 (mod 4), then p = x2 + aby2 ≡ 1 (mod 4) and so
(a + b)(p − 1) ≡ 0 (mod 8). If ab ≡ 3 (mod 4), then 4 | a + b and so 8 | (a + b)(p − 1).
Thus, we always have 8 | (a + b)(p − 1). It is easily seen that x ± by ≡ 1 (mod 2) and
x± by ≡ (−1)

ab+1
2

y(x∓ ay) (mod 4). Thus, applying the above and Lemma 2.5 we have

λ(a, b;n + 1) =
∑

X≡Y≡1 (mod 4)
aX2+bY 2=8n+a+b

XY

= (x + by) · (−1)
ab+1

2
y(x− ay) + (x− by) · (−1)

ab+1
2

y(x + ay)

= (−1)
ab+1

2
y2(x2 − aby2) = (−1)

ab+1
2

y(4x2 − 2p).

This together with Lemma 2.9 proves (i).
Now we consider (ii). Since 2 - a, 2 | b, 8 - b and 8 | p− 1, we deduce 2 - x, 8 | by2 and so

2 | y. It is easily seen that x± by ≡ 1 (mod 2) and x± by ≡ (−1)
y
2 (x∓ ay) (mod 4). Thus,

applying the above and Lemma 2.5 we have

λ(a, b;n + 1) =
∑

X≡Y≡1 (mod 4)
aX2+bY 2=8n+a+b

XY

= (x + by) · (−1)
y
2 (x− ay) + (x− by) · (−1)

y
2 (x + ay)

= (−1)
y
2 2(x2 − aby2) = (−1)

y
2 (4x2 − 2p).

This together with Lemma 2.9 yields (ii). The proof is now complete.
Corollary 3.3. Let a, b ∈ N with 2 - ab and (a, b) = 1. Let p be an odd prime such that

p 6= ab, ab + 1 and p = x2 + aby2 with x, y ∈ Z. Then

λ
(
a, b;

(a + b)(p− 1)
8

+ 1
)

= λ
(
1, ab;

(ab + 1)(p− 1)
8

+ 1
)
.

Proof. By Theorem 3.1 we have

(−1)
1+ab

2
(x+1)(4x2 − 2p) = λ

(
1, ab;

(ab + 1)(p− 1)
8

+ 1
)
.

This together with Theorem 3.2(i) gives the result.
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Corollary 3.4. Suppose a ∈ N and 2 - a. Let p be an odd prime such that p = x2 +16ay2

with x, y ∈ Z. Then

(−1)y(4x2 − 2p) = λ
(
a, 4;

(a + 4)p− a + 4
8

)
.

Proof. Taking b = 4 and replacing y with 2y in Theorem 3.2(ii) we deduce the result.

Let p be an odd prime. From Theorem 3.2(ii) we deduce:

(−1)
y
2 (4x2 − 2p) = λ(1, 2; (3p + 5)/8) for p = x2 + 2y2 ≡ 1 (mod 8),(3.1)

(−1)
y
2 (4x2 − 2p) = λ(1, 6; (7p + 1)/8) for p = x2 + 6y2 ≡ 1 (mod 24),(3.2)

(−1)
y
2 (4x2 − 2p) = λ(1, 10; (11p− 3)/8) for p = x2 + 10y2 ≡ 1, 9 (mod 40),(3.3)

(−1)
y
2 (4x2 − 2p) = λ(1, 12; (13p− 5)/8) for p = x2 + 12y2 ≡ 1 (mod 24).(3.4)

Theorem 3.3. Let a, b ∈ N, 2 - a, 2 | b and 8 - b. Let p be a prime such that
p ≡ a (mod 8), p 6= a, p - ab+1 and p = ax2+by2 with x, y ∈ Z. Let n = ((ab+1)p−a−b)/8.
Then

(−1)
a−1
2

+ y
2 (4ax2 − 2p) = (−1)

a−1
2

+ y
2 (2p− 4by2) = λ(a, b;n + 1)

=
∑

k1+2k2+···+nkn=n

(−3)k1+···+kn
(aσ( 1

a) + bσ(1
b ))

k1 · · · (aσ(n
a ) + bσ(n

b ))kn

1k1 · k1! · · ·nkn · kn!
.

Proof. Clearly we have 2 - x and so 8 | by2. Since 8 - b we must have 2 | y. As
p ≡ a (mod 8) we have (ab+1)p ≡ (1+ab)a ≡ a+ b (mod 8). By Lemma 2.3, all the integral
solutions {X, Y } with 2 - XY to the equation 8n + a + b = (ab + 1)p = aX2 + bY 2 are given
by {x±by, ax∓y}, {x±by,−(ax∓y)}, {−(x±by), ax∓y}, {−(x±by),−(ax∓y)}. Since x is
odd, we may choose the sign of x so that x ≡ 1 (mod 4). Then x±by ≡ (−1)

a−1
2

+ y
2 (ax∓y) ≡

1 (mod 4). Therefore, applying Lemma 2.5 we have

λ(a, b;n + 1) =
∑

X≡Y≡1 (mod 4)
aX2+bY 2=8n+a+b

XY

= (x + by) · (−1)
a−1
2

+ y
2 (ax− y) + (x− by) · (−1)

a−1
2

+ y
2 (ax + y)

= (−1)
a−1
2

+ y
2 2(ax2 − by2) = (−1)

a−1
2

+ y
2 (4ax2 − 2p)

= (−1)
a−1
2

+ y
2 (2p− 4by2).

This together with Lemma 2.9 proves the theorem.

As examples, taking a = 3, 5 and b = 2 in Theorem 3.3 we have:

(−1)
y
2 (8y2 − 2p) = λ(2, 3; (7p + 3)/8) for p = 3x2 + 2y2 ≡ 11 (mod 24),(3.5)

(−1)
y
2 (2p− 8y2) = λ(2, 5; (11p + 1)/8) for p = 5x2 + 2y2 ≡ 13, 37 (mod 40).(3.6)

Corollary 3.5. Let a, b ∈ N with 2 - a, 2 | b, 8 - b and (a, b) = 1. Let p ≡ 1 (mod 8) be a
prime such that p 6= ab, ab + 1 and p = x2 + aby2 with x, y ∈ Z. Then

λ
(
a, b;

(a + b)(p− 1)
8

+ 1
)

= λ
(
1, ab;

(ab + 1)(p− 1)
8

+ 1
)
.
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Proof. By Theorem 3.3 we have

(−1)
y
2 (4x2 − 2p) = λ

(
1, ab;

(ab + 1)(p− 1)
8

+ 1
)
.

This together with Theorem 3.2(ii) gives the result.

4. Constructing xy for primes p = ax2 + by2

Theorem 4.1. Let a, b ∈ N, 8 - a, 8 - b and n ∈ {0, 1, 2, . . .}. Let p be an odd prime such
that p = 8n + a + b = ax2 + by2 with x, y ∈ Z and x ≡ y (mod 4). Then

xy = λ(a, b;n + 1) and 2ax2 − p = ±
√

p2 − 4abλ(a, b;n + 1)2.

Proof. It is clear that (a, b) = 1. Let x, y ∈ Z be such that p = 8n + a + b = ax2 + by2.
When 2 | x, we have 2 - y, a ≡ 8n + a = ax2 + by2 − b ≡ ax2 ≡ 0, 4a (mod 8) and so 8 | a.
When 2 | y, we have 2 - x, b ≡ 8n + b = ax2 + by2 − a ≡ by2 ≡ 0, 4b (mod 8) and so 8 | b. As
8 - a and 8 - b, we see that 2 - xy. Suppose x ≡ y ≡ 1 (mod 4). Then x and y are unique by
Lemma 2.1. Now applying Lemma 2.5 we obtain xy = λ(a, b;n + 1).

Set λ = λ(a, b;n+1). Then x2(p−ax2) = bx2y2 = bλ2 and so ax4−px2 + bλ2 = 0. Thus,
x2 = (p±

√
p2 − 4abλ2)/(2a). This completes the proof.

For example, if p = 8n + 3 is a prime and so p = x2 + 2y2 with x ≡ y (mod 4), then
xy = λ(1, 2;n + 1) and 2x2 − p = ±

√
p2 − 8λ(1, 2;n + 1)2.

Theorem 4.2. Let a, b ∈ N with (a, b) = 1, ab > 1 and ab ≡ 1 (mod 4). Let p be an odd
prime and 2p = 8n + a + b = ax2 + by2 with n ∈ {0, 1, 2, . . .}, x, y ∈ Z and 4 | x− y. Then

xy = λ(a, b;n + 1) and ax2 = p±
√

p2 − abλ(a, b;n + 1)2.

Proof. Let x, y ∈ Z be such that 2p = 8n + a + b = ax2 + by2. Then clearly 2 - xy.
Suppose x ≡ y ≡ 1 (mod 4). Then x and y are unique by Lemma 2.6. Now applying Lemma
2.5 we obtain xy = λ, where λ = λ(a, b;n + 1). Thus, x2(2p − ax2) = bx2y2 = bλ2 and so
ax4 − 2px2 + bλ2 = 0. Hence, x2 = (p±

√
p2 − abλ2)/a. This completes the proof.

For example, if p = 4n + 3 ≡ 3, 7 (mod 20) is a prime and so 2p = x2 + 5y2 with
x ≡ y (mod 4), then xy = λ(1, 5;n + 1) and x2 − p = ±

√
p2 − 5λ(1, 5;n + 1)2.

Theorem 4.3. Let a, b ∈ N, 2 - ab, ab 6= 3, a + b ≡ 4 (mod 8). Let p be an odd prime
such that p - ab and 4p = ax2 + by2 with x, y ∈ Z and x ≡ y ≡ 1 (mod 4). Then

xy = λ and ax2 = 2p±
√

4p2 − abλ2,

where λ = λ(a, b; 1
2(p− a+b

4 ) + 1).
Proof. Clearly (a, b) = 1 and ab ≡ 3 (mod 4). From Lemma 2.7 we know that x

and y are unique. Set n = 1
2(p − a+b

4 ). Then 8n + a + b = 4p. By Lemma 2.5 we have
xy = λ and so x2y2 = λ2. Thus x2(4p − ax2) = bλ2 and so ax4 − 4px2 + bλ2 = 0. Hence

x2 = 4p±
√

16p2−4abλ2

2a = 2p±
√

4p2−abλ2

a . This completes the proof.

For example, if p 6= 11 is an odd prime and 4p = x2 + 11y2 with x ≡ y ≡ 1 (mod 4), then
xy = λ and x2 = 2p±

√
4p2 − 11λ2, where λ = λ(1, 11; (p− 1)/2).
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5. Evaluation of λ(1, 3; n), λ(1, 7; 2n + 1) and

λ(3, 5; 2n + 1)

For n ∈ N, in [6, Vol.2] Klein and Fricke showed that

(5.1) λ(1, 1;n + 1) =
∑

x,y∈Z,x≡1 (mod 4)
x2+y2=4n+1

(x2 − y2).

See also [8]. In the section we evaluate λ(1, 3;n), λ(1, 7; 2n + 1) and λ(3, 5; 2n + 1).
Lemma 5.1. Let a, b, n ∈ N with 2 - ab. Then

∑

x,y∈Z,x+ay≡1 (mod 4)
x2+aby2=2n+1

(x + ay)(x− by) =
1
2

∑

x,y∈Z
x2+aby2=2n+1

(x2 − aby2).

Proof. If x, y ∈ Z and x2+aby2 = 2n+1, then clearly x+ay is odd. Since (x+ay)(x−by) =
(−x + a(−y))(−x− b(−y)), we see that

∑

x,y∈Z,x+ay≡1 (mod 4)
x2+aby2=2n+1

(x + ay)(x− by)

=
1
2

∑

x,y∈Z
x2+aby2=2n+1

(x + ay)(x− by) =
1
2

∑

x,y∈Z
x2+aby2=2n+1

(x2 − aby2 + (a− b)xy)

=
1
2

∑

x,y∈Z
x2+aby2=2n+1

(x2 − aby2).

This proves the lemma.
Theorem 5.1. Let n ∈ N. Then

λ(1, 3;n + 1) =
1
2

∑

x,y∈Z
x2+3y2=2n+1

(x2 − 3y2),

λ(1, 7; 2n + 1) =
1
2

∑

x,y∈Z
x2+7y2=2n+1

(x2 − 7y2).

Proof. From Lemma 2.5 we have

λ(1, 3;n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
X2+3Y 2=8n+4

XY.

As H(−12) = {[1, 0, 3]}, by Lemma 2.2 we have

R([1, 0, 3], 8n + 4) =
1
2
R([1, 0, 3], 4)R([1, 0, 3], 2n + 1) = 3R([1, 0, 3], 2n + 1).

Thus, if R([1, 0, 3], 2n + 1) = 0, then R([1, 0, 3], 8n + 4) = 0 and so λ(1, 3;n + 1) = 0. Hence
the result is true in this case. Now assume that 2n + 1 = x2 + 3y2 with x, y ∈ Z. Then

11



8n + 4 = 4(x2 + 3y2) = (x + 3y)2 + 3(x − y)2. As R([1, 0, 3], 8n + 4) = 3R([1, 0, 3], 2n + 1)
we see that all the integral solutions to the equation 8n + 4 = X2 + 3Y 2 are given by
{2x, 2y}, {x+3y, x−y}, {x+3y,−(x−y)}, where {x, y} runs over all integral solutions to the
equation 2n+1 = x2+3y2. Hence, using Lemmas 2.5, 5.1 and the fact x+3y ≡ x−y (mod 4)
we deduce

λ(1, 3;n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
X2+3Y 2=8n+4

XY =
∑

x,y∈Z,x+3y≡1 (mod 4)
x2+3y2=2n+1

(x + 3y)(x− y)

=
1
2

∑

x,y∈Z
x2+3y2=2n+1

(x2 − 3y2).

Now we consider the formula for λ(1, 7; 2n + 1). By Lemma 2.5 we have

λ(1, 7; 2n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
X2+7Y 2=16n+8

XY.

As H(−28) = {[1, 0, 7]}, by Lemma 2.2 we have

R([1, 0, 7], 16n + 8) =
1
2
R([1, 0, 7], 8)R([1, 0, 7], 2n + 1) = 2R([1, 0, 7], 2n + 1).

Thus, if R([1, 0, 7], 2n + 1) = 0, then R([1, 0, 7], 8(2n + 1)) = 0 and so λ(1, 7; 2n + 1) = 0.
Hence the result is true in this case. Now assume that 2n+1 = x2 +7y2 with x, y ∈ Z. Then
16n + 8 = 8(x2 + 7y2) = (x + 7y)2 + 7(x− y)2. As R([1, 0, 7], 16n + 8) = 2R([1, 0, 7], 2n + 1)
we see that all the integral solutions to the equation 16n + 8 = X2 + 7Y 2 are given by
{x+7y, x−y}, {x+7y,−(x−y)}, where {x, y} runs over all integral solutions to the equation
2n + 1 = x2 + 7y2. Hence, using Lemmas 2.5, 5.1 and the fact x + 7y ≡ x − y (mod 4) we
deduce

λ(1, 7; 2n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
X2+7Y 2=16n+8

XY =
∑

x,y∈Z,x+7y≡1 (mod 4)
x2+7y2=2n+1

(x + 7y)(x− y)

=
1
2

∑

x,y∈Z
x2+7y2=2n+1

(x2 − 7y2).

This completes the proof.
Theorem 5.2. For n ∈ N we have

λ(1, 15; 4n + 1) = λ(3, 5; 2n + 1) =
1
2

∑

x,y∈Z
x2+15y2=2n+1

(x2 − 15y2).

Proof. It is clear that

R([3, 0, 5], 8) = 4, R([1, 0, 15], 8) = 0, R([1, 0, 15], 16) = 6 and R([3, 0, 5], 16) = 0.

As H(−60) = {[1, 0, 15], [3, 0, 5]}, by Lemma 2.2 and the above we have

2R([3, 0, 5], 8(2n + 1))
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= R([3, 0, 5], 8)R([1, 0, 15], 2n + 1) + R([1, 0, 15], 8)R([3, 0, 5], 2n + 1)
= 4R([1, 0, 15], 2n + 1)

and

2R([1, 0, 15], 16(2n + 1))
= R([1, 0, 15], 16)R([1, 0, 15], 2n + 1) + R([3, 0, 5], 16)R([3, 0, 5], 2n + 1)
= 6R([1, 0, 15], 2n + 1).

From Lemma 2.5 we have

λ(1, 15; 4n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
X2+15Y 2=16(2n+1)

XY, λ(3, 5; 2n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
3X2+5Y 2=8(2n+1)

XY.

Thus, if R([1, 0, 15], 2n + 1) = 0, then R([1, 0, 15], 16(2n + 1)) = R([3, 0, 5], 8(2n + 1)) = 0
and so λ(1, 15; 4n + 1) = λ(3, 5; 2n + 1) = 0. Hence the result is true in this case.

Now assume that 2n+1 = x2 +15y2 with x, y ∈ Z. Then 16(2n+1) = (4x)2 +15(4y)2 =
(x+15y)2 +15(x−y)2 and 8(2n+1) = 3(x+5y)2 +5(x−3y)2. Since R([3, 0, 5], 8(2n+1)) =
2R([1, 0, 15], 2n + 1) and R([1, 0, 15], 16(2n + 1)) = 3R([1, 0, 15], 2n + 1), we see that all the
integral solutions to the equation 3X2 + 5Y 2 = 8(2n + 1) are given by {x + 5y,±(x− 3y)},
and all the integral solutions to the equation X2 + 15Y 2 = 16(2n + 1) are given by {4x, 4y}
and {x+15y,±(x−y)}, where {x, y} runs over all integral solutions to the equation 2n+1 =
x2 + 15y2. As x + 5y ≡ x− 3y ≡ ±1 (mod 4) and x + 15y ≡ x− y ≡ ±1 (mod 4), from the
above and Lemma 5.1 we deduce

λ(1, 15; 4n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
X2+15Y 2=16(2n+1)

XY =
∑

x,y∈Z,x+15y≡1 (mod 4)
x2+15y2=2n+1

(x + 15y)(x− y)

=
1
2

∑

x,y∈Z
x2+15y2=2n+1

(x2 − 15y2)

and

λ(3, 5; 2n + 1) =
∑

X,Y ∈Z,X≡Y≡1 (mod 4)
3X2+5Y 2=8(2n+1)

XY =
∑

x,y∈Z,x+5y≡1 (mod 4)
x2+15y2=2n+1

(x + 5y)(x− 3y)

=
1
2

∑

x,y∈Z
x2+15y2=2n+1

(x2 − 15y2).

This proves the theorem.
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Theorem 5.3. Let p > 5 be a prime. Then

λ(3, 5; p) =
{

0 if p 6≡ 1, 19 (mod 30),
4x2 − 2p if p ≡ 1, 19 (mod 30) and so p = x2 + 15y2(x, y ∈ Z),

λ(3, 5; 2p) =
{

0 if p 6≡ 17, 23 (mod 30),
2p− 12x2 if p ≡ 17, 23 (mod 30) and so p = 3x2 + 5y2(x, y ∈ Z),

λ(3, 5; 3p) =
{

0 if p 6≡ 17, 23 (mod 30),
36x2 − 6p if p ≡ 17, 23 (mod 30) and so p = 3x2 + 5y2(x, y ∈ Z),

λ(3, 5; 5p) =
{

0 if p 6≡ 17, 23 (mod 30),
10p− 60x2 if p ≡ 17, 23 (mod 30) and so p = 3x2 + 5y2(x, y ∈ Z).

Proof. If p ≡ 1, 19 (mod 30), then p = x2 + 15y2 for some positive integers x and y (see
[14, Table 9.1]). By Lemma 2.1, x and y are unique. From Theorem 5.2 we have

λ(3, 5; p) =
1
2

∑

x,y∈Z
x2+15y2=p

(x2 − 15y2) = 2(x2 − 15y2) = 4x2 − 2p.

If p 6≡ 1, 19 (mod 30), then p is not represented by x2 +15y2. Thus, by Theorem 5.2 we have
λ(3, 5; p) = 0.

If p ≡ 17, 23 (mod 30), then p = 3x2 + 5y2 with x, y ∈ Z (see [14, Table 9.1]). Taking
a = 3 and b = 5 in Theorem 3.1 we obtain λ(3, 5; 2p) = 2p − 12x2. If p 6≡ 17, 23 (mod 30),
as R([3, 0, 5], 16) = R([3, 0, 5], p) = 0, using Lemma 2.2 we see that 2R([3, 0, 5], 16p) =
R([3, 0, 5], 16)R([1, 0, 15], p) + R([1, 0, 15], 16)R([3, 0, 5], p) = 0. Thus, appealing to Lemma
2.5 we have λ(3, 5; 2p) = 0.

Let b ∈ {3, 5}. By Theorem 5.2 we have

λ(3, 5; bp) =
1
2

∑

X,Y ∈Z
X2+15Y 2=bp

(X2 − 15Y 2).

As H(−60) = {[1, 0, 15], [3, 0, 5]}, R([1, 0, 15], b) = 0 and R([3, 0, 5], b) = 2, using Lemma 2.2
we see that

R([1, 0, 15], bp) =
1
2
(R([1, 0, 15], b)R([1, 0, 15], p) + R([3, 0, 5], b)R([3, 0, 5], p))

= R([3, 0, 5], p).

If p 6≡ 17, 23 (mod 30), then R([1, 0, 15], bp) = R([3, 0, 5], p) = 0 and so λ(3, 5; bp) = 0. If
p ≡ 17, 23 (mod 30), then there are unique positive integers x and y such that p = 3x2 +5y2.
As R([1, 0, 15], bp) = R([3, 0, 5], p) = 4, we see that all the integral solutions to 3p = X2+15Y 2

are given by {±3x,±y}, and all the integral solutions to 5p = X2 + 15Y 2 are given by
{±5y,±x}. Thus,

λ(3, 5; 3p) =
1
2

∑

X,Y ∈Z
X2+15Y 2=3p

(X2 − 15Y 2) = 2((3x)2 − 15y2) = 36x2 − 6p

and
λ(3, 5; 5p) =

1
2

∑

X,Y ∈Z
X2+15Y 2=5p

(X2 − 15Y 2) = 2((5y)2 − 15x2) = 10p− 60x2.

This completes the proof.
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